Optimal control of a coupled partial and ordinary differential equations system for the assimilation of polarimetry Stokes vector measurements in tokamak free-boundary equilibrium reconstruction with application to ITER

Abstract : The modelization of polarimetry Faraday rotation measurements commonly used in tokamak plasma equilibrium reconstruction codes is an approximation to the Stokes model. This approximation is not valid for the foreseen ITER scenarios where high current and electron density plasma regimes are expected. In this work a method enabling the consistent resolution of the inverse equilibrium reconstruction problem in the framework of non-linear free-boundary equilibrium coupled to the Stokes model equation for polarimetry is provided. Using optimal control theory we derive the optimality system for this inverse problem. A sequential quadratic programming (SQP) method is proposed for its numerical resolution. Numerical experiments with noisy synthetic measurements in the ITER tokamak configuration for two test cases, the second of which is an H-mode plasma, show that the method is efficient and that the accuracy of the identification of the unknown profile functions is improved compared to the use of classical Faraday measurements.
Type de document :
Article dans une revue
Computer Physics Communications, Elsevier, 2017, 217, pp.43 - 57. 〈10.1016/j.cpc.2017.04.003〉
Liste complète des métadonnées

Littérature citée [44 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01442462
Contributeur : Blaise Faugeras <>
Soumis le : mardi 5 décembre 2017 - 16:34:16
Dernière modification le : jeudi 3 mai 2018 - 13:32:58

Fichier

cm-cpc.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Blaise Faugeras, Jacques Blum, Holger Heumann, Cedric Boulbe. Optimal control of a coupled partial and ordinary differential equations system for the assimilation of polarimetry Stokes vector measurements in tokamak free-boundary equilibrium reconstruction with application to ITER. Computer Physics Communications, Elsevier, 2017, 217, pp.43 - 57. 〈10.1016/j.cpc.2017.04.003〉. 〈hal-01442462v2〉

Partager

Métriques

Consultations de la notice

80

Téléchargements de fichiers

63