Classification of Elementary Cellular Automata Up to Topological Conjugacy

Abstract : Topological conjugacy is the natural notion of isomorphism in topological dynamics. It can be used as a very fine grained classification scheme for cellular automata. In this article, we investigate different invariants for topological conjugacy in order to distinguish between non-conjugate systems. In particular we show how to compute the cardinality of the set of points with minimal period n for one-dimensional CA. Applying these methods to the 256 elementary one-dimensional CA, we show that up to topological conjugacy there are exactly 83 of them.
Type de document :
Communication dans un congrès
Jarkko Kari. 21st Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA), Jun 2015, Turku, Finland. Springer, Lecture Notes in Computer Science, LNCS-9099, pp.99-112, 2015, Cellular Automata and Discrete Complex Systems. 〈10.1007/978-3-662-47221-7_8〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01442485
Contributeur : Hal Ifip <>
Soumis le : vendredi 20 janvier 2017 - 16:09:47
Dernière modification le : lundi 23 janvier 2017 - 14:22:58
Document(s) archivé(s) le : vendredi 21 avril 2017 - 16:02:37

Fichier

338243_1_En_8_Chapter.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Jeremias Epperlein. Classification of Elementary Cellular Automata Up to Topological Conjugacy. Jarkko Kari. 21st Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA), Jun 2015, Turku, Finland. Springer, Lecture Notes in Computer Science, LNCS-9099, pp.99-112, 2015, Cellular Automata and Discrete Complex Systems. 〈10.1007/978-3-662-47221-7_8〉. 〈hal-01442485〉

Partager

Métriques

Consultations de la notice

50

Téléchargements de fichiers

1