A Topological Criterion for Filtering Information in Complex Brain Networks

Fabrizio De Vico Fallani 1, 2 Vito Latora 3 Mario Chavez 1, 2
1 ARAMIS - Algorithms, models and methods for images and signals of the human brain
UPMC - Université Pierre et Marie Curie - Paris 6, ICM - Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute, Inria de Paris
Abstract : In many biological systems, the network of interactions between the elements can only be inferred from experimental measurements. In neuroscience, non-invasive imaging tools are extensively used to derive either structural or functional brain networks in-vivo. As a result of the inference process, we obtain a matrix of values corresponding to a fully connected and weighted network. To turn this into a useful sparse network, thresholding is typically adopted to cancel a percentage of the weakest connections. The structural properties of the resulting network depend on how much of the inferred connectivity is eventually retained. However, how to objectively fix this threshold is still an open issue. We introduce a criterion, the efficiency cost optimization (ECO), to select a threshold based on the optimization of the trade-off between the efficiency of a network and its wiring cost. We prove analytically and we confirm through numerical simulations that the connection density maximizing this trade-off emphasizes the intrinsic properties of a given network, while preserving its sparsity. Moreover, this density threshold can be determined a-priori, since the number of connections to filter only depends on the network size according to a power-law. We validate this result on several brain networks, from micro- to macro-scales, obtained with different imaging modalities. Finally, we test the potential of ECO in discriminating brain states with respect to alternative filtering methods. ECO advances our ability to analyze and compare biological networks, inferred from experimental data, in a fast and principled way.
Type de document :
Article dans une revue
PLoS Computational Biology, Public Library of Science, 2017, 13 (1), pp.1-18. 〈10.1371/journal.pcbi.1005305〉
Liste complète des métadonnées

Littérature citée [66 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01443254
Contributeur : Fabrizio De Vico Fallani <>
Soumis le : lundi 16 octobre 2017 - 11:40:26
Dernière modification le : lundi 10 septembre 2018 - 14:16:05
Document(s) archivé(s) le : mercredi 17 janvier 2018 - 12:57:16

Fichier

journal.pcbi.1005305.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Fabrizio De Vico Fallani, Vito Latora, Mario Chavez. A Topological Criterion for Filtering Information in Complex Brain Networks. PLoS Computational Biology, Public Library of Science, 2017, 13 (1), pp.1-18. 〈10.1371/journal.pcbi.1005305〉. 〈hal-01443254〉

Partager

Métriques

Consultations de la notice

510

Téléchargements de fichiers

45