Optical Music Recognition: Standard and Cost-Sensitive Learning with Imbalanced Data

Abstract : The article is focused on a particular aspect of classification, namely the issue of class imbalance. Imbalanced data adversely affects the recognition ability and requires proper classifier’s construction. In this work we present a case of music notation as an example of imbalanced data. Three classification algorithms - random forest, standard SVM and cost-sensitive SVM are described and tested. Feature selection based on random forest feature importance was used. Also, feature dimension reduction using PCA was studied.
Type de document :
Communication dans un congrès
Khalid Saeed; Władysław Homenda. 14th Computer Information Systems and Industrial Management (CISIM), Sep 2015, Warsaw, Poland. Springer, Lecture Notes in Computer Science, LNCS-9339, pp.601-612, 2015, Computer Information Systems and Industrial Management. 〈10.1007/978-3-319-24369-6_51〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01444503
Contributeur : Hal Ifip <>
Soumis le : mardi 24 janvier 2017 - 10:41:49
Dernière modification le : mercredi 25 janvier 2017 - 01:04:04
Document(s) archivé(s) le : mardi 25 avril 2017 - 14:05:06

Fichier

978-3-319-24369-6_51_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Wojciech Lesinski, Agnieszka Jastrzebska. Optical Music Recognition: Standard and Cost-Sensitive Learning with Imbalanced Data. Khalid Saeed; Władysław Homenda. 14th Computer Information Systems and Industrial Management (CISIM), Sep 2015, Warsaw, Poland. Springer, Lecture Notes in Computer Science, LNCS-9339, pp.601-612, 2015, Computer Information Systems and Industrial Management. 〈10.1007/978-3-319-24369-6_51〉. 〈hal-01444503〉

Partager

Métriques

Consultations de la notice

29

Téléchargements de fichiers

8