
HAL Id: hal-01444505
https://inria.hal.science/hal-01444505

Submitted on 24 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Graph Databases: Their Power and Limitations
Jaroslav Pokorný

To cite this version:
Jaroslav Pokorný. Graph Databases: Their Power and Limitations. 14th Computer Information
Systems and Industrial Management (CISIM), Sep 2015, Warsaw, Poland. pp.58-69, �10.1007/978-3-
319-24369-6_5�. �hal-01444505�

https://inria.hal.science/hal-01444505
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Graph Databases: Their Power and Limitations

Jaroslav Pokorný

Department of Software Engineering, Faculty of Mathematics and Physics

Charles University, Prague, Czech Republic

pokorny@ksi.mff.cuni.cz

Abstract. Real world data offers a lot of possibilities to be represented as

graphs. As a result we obtain undirected or directed graphs, multigraphs and

hypergraphs, labelled or weighted graphs and their variants. A development of

graph modelling brings also new approaches, e.g., considering constraints. Pro-

cessing graphs in a database way can be done in many different ways. Some

graphs can be represented as JSON or XML structures and processed by their

native database tools. More generally, a graph database is specified as any stor-

age system that provides index-free adjacency, i.e. an explicit graph structure.

Graph database technology contains some technological features inherent to

traditional databases, e.g. ACID properties and availability. Use cases of graph

databases like Neo4j, OrientDB, InfiniteGraph, FlockDB, AllegroGraph, and

others, document that graph databases are becoming a common means for any

connected data. In Big Data era, important questions are connected with scala-

bility for large graphs as well as scaling for read/write operations. For example,

scaling graph data by distributing it in a network is much more difficult than

scaling simpler data models and is still a work in progress. Still a challenge is

pattern matching in graphs providing, in principle, an arbitrarily complex iden-

tity function. Mining complete frequent patterns from graph databases is also

challenging since supporting operations are computationally costly. In this pa-

per, we discuss recent advances and limitations in these areas as well as future

directions.

Keywords: graph database · graph storage · graph querying · graph scalability ·

Big Graphs

1 Introduction

A graph database is any storage system that uses graph structures with nodes and

edges, to represent and store data. The most commonly used model of graphs in the

context of graph databases is called a (labelled) property graph model [15]. The prop-

erty graph contains connected entities (the nodes) which can hold any number of

properties (attributes) expressed as key-value pairs. Nodes and edges can be tagged

with labels representing their different roles in application domain. Some approaches

refer to the label as the type. Labels may also serve to attach metadata—index or con-

straint information—to certain nodes.

Relationships provide directed, semantically relevant connections (edges) between

two nodes. A relationship always has a direction, a start node, and an end node. Like

nodes, relationships can have any properties. Often, relationships have quantitative

properties, such as weight, cost, distance, ratings or time interval. Properties make the

nodes and edges more descriptive and practical in use. Both nodes and edges are de-

fined by a unique identifier.

As relationships are stored efficiently, two nodes can share any number or relation-

ships of different types without sacrificing performance. Note that although they are

directed, relationships can always be navigated regardless of direction. In fact, the

property graph model concerns data structure called in graph theory labelled and

directed attributed multigraphs.

Sometimes we can meet hypergraphs in graph database software. A hypergraph is

a generalization of the concept of a graph, in which the edges are substituted by hy-

peredges. If a regular edge connects two nodes of a graph, then a hyperedge connects

an arbitrary set of nodes.

Considering graphs as a special structured data, an immediate idea which arises is,

how to store and process graph data in a database way. For example, we can represent

a graph by tables in a relational DBMS (RDBMS) and use sophisticated constructs of

SQL or Datalog to express some graph queries. Some graphs can be represented as

JSON or XML structures and processed by their native database tools. A more gen-

eral native solution is offered by graph databases.

One of the more interesting upcoming growth areas is the use of graph databases

and graph-based analytics on large, unstructured datasets. A special attention is de-

voted to so-called Big Graphs, e.g. Facebook with 1 Billion nodes and 140 Billion

edges, requiring special storage and processing algorithms [12].

Graph databases are focused on:

 processing highly connected data,

 be flexible in usage data models behind graphs used,

 exceptional performances for local reads, by traversing the graph.

Graph databases are often included among NoSQL databases
1
.

We should also mention lower tools for dealing with graphs. They include frame-

works, such as Google’s Pregel [8] - a system for large-scale graph processing on

distributed cluster of commodity machines, and its more advanced variant Giraph
2

suitable for analytical purposes. They do not use a graph database for storage. These

systems are particularly suitable for OLAP and offline graph analytics, i.e. they are

optimized for scanning and processing Big Graphs in batch mode. Also the notion of

a Big Analytics occurs in this context.

In traditional database terminology, we should distinguish a Graph Database

Management Systems (GDBMS) and a graph database. Unfortunately, the latter sub-

stitutes often the former in practice. We will also follow this imprecise terminology.

1 http://nosql-database.org/
2 http://giraph.apache.org/

There are a lot of papers about graph models, graph databases, e.g. [7], [12], [16],

and theory and practise of graph queries, e.g. [4]. Now the most popular book is rather

practically oriented work [15]. A performance comparison of some graph databases is

presented, e.g., in [6], [9].

In this paper, a lot of examples from the graph database technology will be docu-

mented on the most popular graph database Neo4j
3
, particularly in its version 2.2. In

Section 2 we describe some basic technological features of graph databases. Section 3

presents an overview of graph databases categories as well as some their representa-

tives, i.e., some commercial products. Section 4 presents some facts concerning the

paper title and offers some research challenges. Finally, Section 5 concludes the pa-

per.

2 Graph database technology

According to other DBMS, we can distinguish a number of basic components of

graph database technology. They include graph storage, graph querying, scalability,

and transaction processing. We will discuss them in the following subsections.

2.1 Graph storage

An important feature of graph databases is that provide native processing capabilities,

at least a property called index-free adjacency, meaning that every node is directly

linked to its neighbour node. A database engine that utilizes index-free adjacency is

one in which each node maintains direct references to its adjacent nodes; each node,

therefore acts as an index of other nearby nodes, which is much cheaper than using

global indexes. This is appropriate for local graph queries where we need one index

lookup for starting node, and then we will traverse relationships by dereferencing

physical pointers directly. In RDBMS we would probably need joining more tables

trough foreign keys and, possibly, additional index lookups.

Obviously, more advanced indexes are used. For example, it is desirable to retrieve

graphs quickly from a large database via graph-based indices, e.g. path-based meth-

ods. The approach used in [17] introduces so called gIndex using frequent substruc-

tures as the basic indexing features. Unfortunately, most of these techniques are usa-

ble only for small graphs.

Some graph stores offer a graph interface over non-native graph storage, such as a

column store in the Virtuoso Universal Server
4
 in application for RDF data. Often

other DBMS is used as back-end storage. For example, the graph database FlockDB
5

stores graph data, but it is not optimized for graph-traversal operations. Instead, it is

optimized for very large adjacency lists. FlockDB uses MySQL as the basic database

storage system just for storing adjacency lists.

3 http://www.neo4j.org/ (retrieved on 9.3.2015)
4 http://virtuoso.openlinksw.com/ (retrieved on 9.3.2015)
5 https://github.com/twitter/flockdb (retrieved on 9.3.2015)

https://github.com/twitter/flockdb

2.2 Graph querying

Query capabilities are fundamental for each DBMS. Those used in graph databases,

of course, come from the associated graph model [2]. The simplest type of a query

preferably uses the index-free adjacency. A node vk є V is said to be at a k-hop dis-

tance from another node v0 є V, if there exists a shortest path from v0 to vk comprising

of k edges. In practice, the basic queries are the most frequent. They include look for a

node, look for the neighbours (1-hop), scan edges in several hops (layers), retrieve an

attribute values, etc. Looking for a node based on its properties or through its identifi-

er is called point querying.

Retrieving an edge by id, may not be a constant time operation. For example, Ti-

tan
6
 will retrieve an adjacent node of the edge to be retrieved and then execute a node

query to identify the edge. The former is constant time but the latter is potentially

linear in the number of edges incident on the node with the same edge label.

As more complex queries we meet very often subgraph and supergraph queries.

They belong to rather traditional queries based on exact matching. Other typical que-

ries include breadth-first/depth-first search, path and shortest path finding, finding

cliques or dense subgraphs, finding strong connected components, etc. Algorithms

used for such complex queries need often iterative computation. This is not easy, e.g.,

with the MapReduce (MR) framework used usually in NoSQL databases for BigData

processing. But the authors of [14] show for finding connected components that some

efficient MR algorithms exist. In Big Graphs often approximate matching is needed.

Allowing structural relaxation, then we talk about structural similarity queries.

Inspired by the SQL language, graph databases are often equipped by a declarative

query language. Today, the most known graph declarative query language is Cypher

working with Neo4j database. Cypher commands are loosely based on SQL syntax

and are targeted at ad hoc queries of the graph data. A rather procedural graph lan-

guage is the traversal language Gremlin
7
.

The most distinctive output for a graph query is another graph, which is ordinarily

a transformation, a selection or a projection of the original graph stored in the data-

base. This implies that graph visualization is strongly tied to the graph querying [13].

2.3 Scalability

Sharding (or graph partitioning) is crucial to making graphs scale. Scaling graph data

by distributing it across multiple machines is much more difficult than scaling the

simpler data in other NoSQL databases, but it is possible. The reason is the very na-

ture way the graph data is connected. When distributing a graph, we want to avoid

having relationships that span machines as much as possible; this is called the mini-

mum point-cut problem. But what looks like a good distribution one moment may no

longer be optimal a few seconds later. Typically, graph partition problems fall under

the category of NP-hard problems. Scaling is usually connected with three things:

6 http://thinkaurelius.github.io/titan/ (retrieved on 9.3.2015)
7 http://gremlindocs.com/

 scaling for large datasets,

 scaling for read performance,

 and scaling for write performance.

In practice, the former is most often discussed. Today, it is not problem in graph

databases area. For example, Neo4j currently has an arbitrary upper limit on the size

of the graph on the order of 10
10

. This is enough to support most of real-world graphs,

including a Neo4j deployment that has now more than half of Facebook's social graph

in one Neo4j cluster.

Scaling for reads usually presents no problem. For example, Neo4j has historically

focused on read performance. In master-slave regime read operations can be done

locally on each slave. To improve scalability in highly concurrent workloads, Neo4j

uses two levels of caching.

Scaling for writes can be accomplished by scaling vertically, but at some point, for

very heavy write loads, it requires the ability to distribute the data across multiple

machines. This is the real challenge. For example, Titan is a highly scalable OLTP

graph database system optimized for thousands of users concurrently accessing and

updating one Big Graph.

2.4 Transaction processing

As in any other DBMS, there are three generic use cases for graphs:

 CRUD (create, read, update, delete) applications,

 query processing - reporting, data warehousing, and real-time analytics,

 batch mode analytics or data discovery.

Graph databases are often optimized and focused on one or more of these uses.

Particularly, the first two uses are focused on transactions processing, i.e. OLTP data-

bases. When dealing with many concurrent transactions, the nature of the graph data

structure helps spread the transactional overhead across the graph. As the graph grows

transactional conflicts typically falls away, i.e. extending the graph tends to the more

throughputs. But not all graph databases are fully ACID. However, the variant based

on the BASE properties often considered in the context of NoSQL databases is not

too appropriate for graphs.

In general, distributed graph processing requires the application of appropriate par-

titioning and replication strategies such as to maximise the locality of the processing,

i.e., minimise the need to ship data between different network nodes.

For example, Neo4j uses master-slave replication, i.e. one machine is designated as

the master and the others as slaves. In Neo4j, all writes directed towards any machine

are passed through the master, which in turn ships updates to the slaves when polled.

If the master fails, the cluster automatically elects a new master.

Neo4j requires a quorum in order to serve write load. It means that a strict majority

of the servers in the cluster need to be online in order for the cluster to accept write

operations. Othervise, the cluster will degrade into read-only operation until a quorum

can be established. Emphasize, that today’s graph databases do not have the same

level of write throughput as other types of NoSQL databases. This is a consequence of

master-slave clustering and proper ACID transactions.

Some more complex architectures occur in the world of graph databases. Typical-

ly, a simple database is used to absorb load, and then feed the data into a graph data-

base for refinement and analysis. The architecture Neo4j 2.2 contains even a bulk

loader which operates at throughput of million records per second.

3 Categories of graph databases

There is a lot of graph databases. The well-maintained and structured Web site
8
 in-

cluded 20 products belonging among GDBMSs in 2011. The development of graph

databases until 2011 is described in [1]. Wikipedia
9
 describes 45 such tools. One half

of them are ACID compliant.

We distinguish general purpose GDBMs, like Neo4j, InfiniteGraph
10

, Sparksee
11

,

Titan, GraphBase
12

, and Trinity
13

, and special ones, e.g. the Web graph database In-

foGrid
14

 and FlockDB, or multimodel databases such as document-oriented databases

enabling traversing between documents. For example, OrientDB
15

 brings together the

power of graphs and the flexibility of documents into one scalable database even with

an SQL layer. HyperGraphDB
16

 stores not only graphs but also hypergraph structures.

All the graph information is stored in the form of key-value pairs.

An interesting question is which graph databases are most popular today. In June

2015, the web page DB-Engines Ranking of GDBMS
17

 considering 17 graph products

presented Neo4j, OrientDB, and Titan on the first three places. GDBMS Sparksee is

on the 6th place.

In Section 3.1 we present two typical representatives of the general purpose cate-

gory. From those special ones, more attention will be devoted to RDF triplestores in

Section 3.2. The framework Pregel is explained in Section 3.3.

3.1 General graph purpose databases - examples

We describe shortly two successful graph GDBMSs - Neo4j and Sparksee - in some

detail. In both GDBMSs a graph is a labelled directed attributed multigraph, where

edges can be either directed or undirected.

8 http://nosql-database.org/ (retrieved on 9.3.2015)
9 http://en.wikipedia.org/wiki/Graph_database#cite_1 (retrieved on 12.6.2015)
10 http://www.objectivity.com/infinitegraph#.U8O_yXnm9I0 (retrieved on 9.3.2015)
11 http://sparsity-technologies.com/#sparksee (retrieved on 9.3.2015)
12 http://graphbase.net/ (retrieved on 9.3.2015)
13 http://research.microsoft.com/en-us/projects/trinity/ (retrieved on 9.3.2015)
14 http://infogrid.org/trac/ (retrieved on 9.3.2015)
15 http://www.orientechnologies.com/ (retrieved on 9.3.2015)
16 http://www.hypergraphdb.org/index
17 http://db-engines.com/en/ranking/graph+dbms (retrieved on 12.6.2015)

http://en.wikipedia.org/wiki/Graph_database#cite_1
http://www.orientechnologies.com/
http://db-engines.com/en/ranking/graph+dbms

Example 1: Neo4j

Neo4j (now in version 2.2) is the world’s leading GDBMS. It is an open-source,

highly scalable, robust (fully ACID compliant) native graph database.

Neo4j stores data as nodes and relationships. Both nodes and relationships can hold

properties in a key-value form. Values can be either a primitive or an array of one

primitive type. Nodes are often used to represent entities, but depending on the do-

main the relationships may be used for that purpose as well. The nodes and edges

have internal unique identifiers that can be used for the data search. Nodes cannot

reference themselves directly [5]. The semantics can be expressed by adding directed

relationships between nodes

Graph processing in Neo4j entails mostly random data access which can be unsuit-

able for Big Graphs. Graphs that cannot fit into main memory may require more disk

accesses, which significantly influences graph processing. Big Graphs similarly to

other Big Data collections must be partitioned over multiple machines to achieve

scalable processing (see Section 2.3).

Example 2: Sparksee

In addition to the basic graph model, Sparksee also introduces the notion of a vir-

tual edge that connects nodes having the same value for a given attribute. These edges

are not materialized. A Sparksee graph is stored in a single file; values and identifiers

are mapped by mapping functions into B+-trees. Bitmaps are used to store nodes and

edges of a certain type.

The architecture of Sparksee includes the core, that manages and queries the graph

structures, then an API layer to provide an application programming interface, and the

higher layer applications, to extend the core capabilities and to visualize and browse

the results. To speed up the different graph queries and other graph operations,

Sparksee offers these index types:

 attributes,

 unique attributes,

 edges to index their neighbours, and

 indices on neighbours.

Sparksee implements a number of graph algorithms, e.g. shortest path, depth-first

searching, finding strong connected components.

3.2 Triplestores

Some graph-oriented products are intended for special graph applications, mostly

RDF data expressed in the form of subject (S) - predicate (P) – object (O). RDF

graphs can be viewed as a special kind of a property graph. At the logical level, an

RDF graph is then represented as one table. For example, AllegroGraph
18

 works

with RDF graphs. BrightStarDB
19

, Bigdata
20

 and SparkleDB
21

 (formerly known as

18 http://franz.com/agraph/ (retrieved on 9.3.2015)
19 http://brightstardb.com/ (retrieved on 9.3.2015)

Meronymy) serve for similar purposes. These triple stores employ intelligent data

management solutions which combine full text search with graph analytics and logical

reasoning to produce deeper results. Sometimes, quad stores are used holding a fourth

attribute - the graph name (N) corresponding normally with the namespace of the

ontology. AllegroGraph deals even with quints (S, P, O, N, ID), the ID can be used to

attach metadata to a triple.

Now, GraphDB™
22

 is the world’s leading RDF triple store that can perform se-

mantic inferring at scale allowing users to create new semantic facts from existing

facts. GraphDB™ is built on OWL (Ontology Web Language). It uses ontologies that

allow the repository to automatically reason about the data. AlegroGraph also sup-

ports reasoning and ontology modelling.

However, existing triple store technologies are not yet suitable for storing truly

large data sets efficiently. According to the W3C Wiki, AllegroGraph leads the larg-

est deployment with loading and querying 1 Trillion triples. The load operation alone

took about 338 hours.

We remind also that triple stores create only a subcategory of graph databases. Ra-

ther a hybrid solution is represented by Virtuoso Universal Server
23

. Its functionality

covers not only processing RDF data, but also relations, XML, text, and others.

A list of requirements often required by customers considering a triple store is in-

troduced in [10]:

 inferring,

 integration with text mining pipelines,

 scalability,

 extensibility,

 enterprise resilience,

 data integration and identity resolution,

 semantics in the cloud,

 semantic expertise.

3.3 Pregel and Giraph

Pregel and Giraph are systems for large-scale graph processing. They provide a fault-

tolerant framework for the execution of graph algorithms in parallel over many ma-

chines. Giraph utilizes Apache MR framework implementation to process graphs.

A significant approach to the design, analysis and implementation of parallel algo-

rithms, hardware and software in Pregel is now the Bulk Synchronous Processing

(BSP) model. BSP offers architecture independence and very high performance of

parallel algorithms on top of multiple computers connected by a communication net-

work.

20 http://www.systap.com/ (retrieved on 9.3.2015)
21 https://www.sparkledb.net/ (retrieved on 9.3.2015)
22 http://www.ontotext.com/products/ontotext-graphdb/ (retrieved on 9.3.2015)
23 http://virtuoso.openlinksw.com/ (retrieved on 9.3.2015)

https://www.sparkledb.net/
http://www.ontotext.com/products/ontotext-graphdb/

BSP is a powerful generalization of MR. A subclass of BSP algorithms can be effi-

ciently implemented in MR [11]. BSP is superfast on standard commodity hardware,

orders of magnitude faster than the MR alone. It is an easy parallel programming

model to learn, it has a cost model that makes it simple to design, analyse, and opti-

mize massively parallel algorithms. It can be considered as a strong candidate to be

the programming model for parallel computing and Big Data in the next years. For

example, Google is already moving in its internal infrastructure from MR to

BSP/Pregel.

4 Limitations of graphs databases

Despite of the long-term research and practice in this area, there are many important

and hard problems that remain open in graph data management. They have influence

on functionality restrictions of graph databases (Section 4.1). Others are specifically

related to Big Analytics (Section 4.2). Challenges concerning some specific problems

of graph database technology are summarized in Section 4.3.

4.1 Functionality restrictions

Declarative querying: Most commercial graph databases cannot be queried using a

declarative language. Only few vendors offer a declarative query interface. This im-

plies also a lack of query optimization abilities.

Data partitioning: Most graph databases do not include the functionality to partition

and distribute data in a computer network. This is essential for supporting horizontal

scalability, too. It is difficult to partition a graph in a way that would not result in

most queries having to access multiple partitions.

Vectored operations: They support a procedure which sequentially writes data from

multiple buffers to a single data stream or reads data from a data stream to multiple

buffers. Horizontally scaled NoSQL databases support this type of data access. It

seems that it is not the case in graph databases today.

Model restrictions: Possibilities of data schema and constraints definitions are re-

stricted in graph databases. Therefore, data inconsistencies can quickly reduce their

usefulness. Often the graph model itself is restricted. Let us recall, e.g., Neo4j nodes

cannot reference themselves directly. There might be real world cases where self-

reference is required.

Querying restrictions: For example, FlockDB overcomes the difficulty of horizontal

scaling the graph by limiting the complexity of graph traversal. In particular,

FlockDB does not allow multi-hop graph walks, so it cannot do a full "transitive clo-

sure". However, FlockDB enables very fast and scalable processing of 1-hop queries.

4.2 Big Analytics requirements

Graph extraction: A question is how to efficiently extract a graph, or a collection of

graphs, from non-graph data stores. Most graph analytics systems assume that the

graph is provided explicitly. However, in many cases, the graph may have to be con-

structed by joining and combining information from different resources which are not

necessarily graphical. Even if the data is stored in a graph database, often we only

need to load a set of subgraphs of that database graph for further analysis.

High cost of some queries: Most real-world graphs are highly dynamic and often gen-

erate large volumes of data at a very rapid rate. One challenge here is how to store the

historical trace compactly while still enabling efficient execution of point queries and

global or neighbourhood-centric analysis tasks. Key differences from temporal

DBMSs developed in the past are the scale of data, focus on distributed and in-

memory environments, and the need to support global analytics. The last task usually

requires loading entire historical snapshots into memory.

Real time processing: As noted, graph data discovery takes place essentially in batch

environments, e.g., in Giraph. Some products aimed at data discovery and complex

analytics that will operate in real-time. An example is uRIKA
24

 – a Big Data Appli-

ance for Graph Analytics. It uses in-memory technology and multithreaded processor

to support non-batch operations on RDF triples.

Graph algorithms: More complex graph algorithms are needed in practice. The ideal

graph database should understand analytic queries that go beyond k-hop queries for

small k. Authors of [9] did a performance comparison of 12 open source graph data-

bases using four fundamental graph algorithms (e.g. simple source shortest path prob-

lem and Page Rank) on networks containing up to 256 million edges. Surprisingly, the

most popular graph databases have reached the worst results in these tests. Current

graph databases (like relational databases) tend to prioritize low latency query execu-

tion over high-throughput data analytics.

Parallelisation: In the context of Big Graphs there is a need for parallelisation of

graph data processing algorithms when the data is too big to handle on one server.

There is a need to understand the performance impact on graph data processing algo-

rithms when the data does not all fit into the memory available and to design algo-

rithms explicitly for these scenarios.

Heterogeneous and uncertain graph data: There is a need to find automated methods

of handling the heterogeneity, incompleteness and inconsistency between different

Big Graph data sets that need to be semantically integrated in order to be effectively

queried or analysed.

24 http://www.cray.com/products/analytics/urika-gd

4.3 Other challenges

Other challenges in the development of graph databases include:

Design of graph databases: Similarly to traditional databases, some attempts to de-

velop design models and tools occur in last time. In [3], the authors propose a model-

driven, system-independent methodology for the design of graph databases starting

from ER-model conceptual schema.

Need for a benchmark: Querying graph data can significantly depend on graph prop-

erties. The benchmarks built, e.g., for RDF data are mostly focused on scaling and not

on querying. Also benchmarks covering a variety of graph analysis tasks would help

towards evaluating and comparing the expressive power and the performance of dif-

ferent graph databases and frameworks.

Developing heuristics for some hard graph problems: For example, partitioning of

large-scale dynamic graph data for efficient distributed processing belongs among

these problems, given that the classical graph partitioning problem is NP-hard.

Graph pattern matching: New semantics and algorithms for graph pattern matching

over distributed graphs are in development, given that the classical subgraph isomor-

phism problem is NP-complete.

Compressing graphs: Compressing graphs for matching without decompression is

possible. Combining parallelism with compressing or partitioning is also very inter-

esting.

Integration of graph data: In the context of Big Data, query formulation and evalua-

tion techniques to assist users querying heterogeneous graph data are needed.

Visualization: Improvement of human-data interaction is fundamental, particularly a

visualization of large-scale graph data, and of query and analysis results.

Graph streams processing: Developing algorithms for processing Big Graph data

streams with goal to compute properties of a graph without storing the entire graph.

5 Conclusions

Graph databases are becoming mainstream. As data becomes connected in a more

complicated way and as the technology of graph databases matures, their use will

increase. New application areas occur, e.g. the Internet of Things, or rather Internet of

Connected Things. Comparing to traditional RDBMS, there is a difficulty for poten-

tial users to identify the particular types of use case for which each product is most

suitable. Performance varies greatly across different GDBMSs depending upon the

size of the graph and how well-optimized a given tool is for a particular task. It seems

that especially for Big Graphs and Big Analytics a lot of previous results and designs

will have to be re-considered and re-thought in next research and development.

Acknowledgments

This paper was supported by the GAČR grant No. P103/13/08195S.

References

1. Angeles, R.: A Comparison of Current Graph Database Models. In: ICDEW '12 Proc. of

the 2012 IEEE 28th International Conference on Data Engineering Workshops, pp. 171-

177. IEEE Computer Society, Washington (2012)

2. Angeles, R., Gutierrez, C.: Survey of Graph Database Models. ACM Computing Surveys,

Vol. 40, No. 1, Article 1 (2008)

3. De Virgilio, R., Maccioni, A., Torlone, R.: Model-Driven Design of Graph Databases. In:

Proc. of ER 2014, LNCS, vol. 8824, pp. 172–185. Springer Int. Publ. Switzerland (2014)

4. Holzschuher, F., Peinl, R.: Performance of graph query languages: comparison of cypher,

gremlin and native access in Neo4j. In: EDBT '13: Proc. of the Joint EDBT/ICDT 2013

Workshops, pp. 195-204. ACM, NY (2013)

5. Hurwitz, J., Nugent, A., Halper, F., Kaufman, M.: Big Data for Dummies. John Wiley &

Sons, Inc. (2013)

6. Kolomičenko, V., Svoboda, M., Holubová – Mlýnková, I.: Experimental Comparison of

Graph Databases. In: IIWAS '13: Proc. of International Conference on Information Integra-

tion and Web-based Applications & Services, p. 115. ACM, NY (2013)

7. Larriba-Pey, J.L., Martínez-Bazán, N., and Domínguez-Sal, D.: Introduction to Graph Da-

tabases. In: M. Koubarakis et al. (Eds.): Reasoning Web 2014, LNCS, vol. 8714, pp. 171–

194. Springer Int. Publishing Switzerland (2014)

8. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., and Czajkow-

ski, G.: Pregel: a system for large-scale graph processing. In: Proc. of SIGMOD '10 Int.

Conf. on Management of data, pp. 135-146. ACM, NY (2010)

9. McColl, R., Ediger, D., Poovey, J., Campbell, D., and Bader, D.A.: A Performance Evalua-

tion of Open Source Graph Databases. In: Proc. of PPAA ’14, pp. 11-18. ACM, NY (2014)

10. Ontotext: The Truth about Triplestores. Ontotext (2014)

11. Pace, M.F.: BSP vs MapReduce. Procedia Computer Science 9 246 – 255 (2012)

12. Pallavi. M, Saxena, A.: Review: Graph Databases. Int. Journal of Advanced Research in

Computer Science and Software Engineering, 4(5): 195-200 (2014)

13. Pokorny, J., Snášel, V.: Big Graph Storage, Processing and Visualization. Chapter 12 in:

Graph-Based Social Media Analysis, I. Pitas (Ed.), pp. 403 – 430. Chapman and Hall/CRC

(2015) in print.

14. Rastogi, V., Machanavajjhala, A., Chitnis, L., and Sarma, A.D.: Finding Connected Com-

ponents on Map-reduce in Logarithmic Rounds. CoRR, abs/1203.5387 ACM (2012)

15. Robinson, I., Webber, J., Eifrém, E.: Graph Databases. O’Reilly Media (2013)

16. Shimpi, D., Chaudhari, S.: An overview of Graph Databases. IJCA Proceedings on Interna-

tional Conference on Recent Trends in Information Technology and Computer Science

2012 ICRTITCS(3):16-22 (2013)

17. Yan, X., Yu, P.S., Han, J.: Graph Indexing: A Frequent Structure –based Approach. In:

Proc. of SIGMOD '04 Int. Conf. on Management of Data, pp. 335-346. ACM, NY (2004)

http://www.dummies.com/store-search.html?query=Judith+Hurwitz
http://www.dummies.com/store-search.html?query=Alan+Nugent
http://www.dummies.com/store-search.html?query=Fern+Halper
http://www.dummies.com/store-search.html?query=Marcia+Kaufman

