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Abstract. Real world data offers a lot of possibilities to be represented as 

graphs. As a result we obtain undirected or directed graphs, multigraphs and 

hypergraphs, labelled or weighted graphs and their variants. A development of 

graph modelling brings also new approaches, e.g., considering constraints. Pro-

cessing graphs in a database way can be done in many different ways. Some 

graphs can be represented as JSON or XML structures and processed by their 

native database tools. More generally, a graph database is specified as any stor-

age system that provides index-free adjacency, i.e. an explicit graph structure. 

Graph database technology contains some technological features inherent to 

traditional databases, e.g. ACID properties and availability. Use cases of graph 

databases like Neo4j, OrientDB, InfiniteGraph, FlockDB, AllegroGraph, and 

others, document that graph databases are becoming a common means for any 

connected data. In Big Data era, important questions are connected with scala-

bility for large graphs as well as scaling for read/write operations. For example, 

scaling graph data by distributing it in a network is much more difficult than 

scaling simpler data models and is still a work in progress. Still a challenge is 

pattern matching in graphs providing, in principle, an arbitrarily complex iden-

tity function. Mining complete frequent patterns from graph databases is also 

challenging since supporting operations are computationally costly. In this pa-

per, we discuss recent advances and limitations in these areas as well as future 

directions. 

Keywords: graph database · graph storage · graph querying · graph scalability · 

Big Graphs  

1 Introduction 

A graph database is any storage system that uses graph structures with nodes and 

edges, to represent and store data. The most commonly used model of graphs in the 

context of graph databases is called a (labelled) property graph model [15]. The prop-

erty graph contains connected entities (the nodes) which can hold any number of 

properties (attributes) expressed as key-value pairs. Nodes and edges can be tagged 

with labels representing their different roles in application domain. Some approaches 

refer to the label as the type. Labels may also serve to attach metadata—index or con-

straint information—to certain nodes. 



Relationships provide directed, semantically relevant connections (edges) between 

two nodes. A relationship always has a direction, a start node, and an end node. Like 

nodes, relationships can have any properties. Often, relationships have quantitative 

properties, such as weight, cost, distance, ratings or time interval. Properties make the 

nodes and edges more descriptive and practical in use. Both nodes and edges are de-

fined by a unique identifier.  

As relationships are stored efficiently, two nodes can share any number or relation-

ships of different types without sacrificing performance. Note that although they are 

directed, relationships can always be navigated regardless of direction. In fact, the 

property graph model concerns data structure called in graph theory labelled and 

directed attributed multigraphs.  

Sometimes we can meet hypergraphs in graph database software. A hypergraph is 

a generalization of the concept of a graph, in which the edges are substituted by hy-

peredges. If a regular edge connects two nodes of a graph, then a hyperedge connects 

an arbitrary set of nodes. 

Considering graphs as a special structured data, an immediate idea which arises is, 

how to store and process graph data in a database way. For example, we can represent 

a graph by tables in a relational DBMS (RDBMS) and use sophisticated constructs of 

SQL or Datalog to express some graph queries. Some graphs can be represented as 

JSON or XML structures and processed by their native database tools. A more gen-

eral native solution is offered by graph databases. 

One of the more interesting upcoming growth areas is the use of graph databases 

and graph-based analytics on large, unstructured datasets. A special attention is de-

voted to so-called Big Graphs, e.g. Facebook with 1 Billion nodes and 140 Billion 

edges, requiring special storage and processing algorithms [12]. 

Graph databases are focused on: 

 processing highly connected data, 

 be flexible in usage data models behind graphs used, 

 exceptional performances for local reads, by traversing the graph. 

Graph databases are often included among NoSQL databases
1
.  

We should also mention lower tools for dealing with graphs. They include frame-

works, such as Google’s Pregel [8] - a system for large-scale graph processing on 

distributed cluster of commodity machines, and its more advanced variant Giraph
2
 

suitable for analytical purposes. They do not use a graph database for storage. These 

systems are particularly suitable for OLAP and offline graph analytics, i.e. they are 

optimized for scanning and processing Big Graphs in batch mode. Also the notion of 

a Big Analytics occurs in this context.  

In traditional database terminology, we should distinguish a Graph Database 

Management Systems (GDBMS) and a graph database. Unfortunately, the latter sub-

stitutes often the former in practice. We will also follow this imprecise terminology. 

                                                           
1 http://nosql-database.org/ 
2 http://giraph.apache.org/ 



There are a lot of papers about graph models, graph databases, e.g. [7], [12], [16], 

and theory and practise of graph queries, e.g. [4]. Now the most popular book is rather 

practically oriented work [15]. A performance comparison of some graph databases is 

presented, e.g., in [6], [9].  

In this paper, a lot of examples from the graph database technology will be docu-

mented on the most popular graph database Neo4j
3
, particularly in its version 2.2. In 

Section 2 we describe some basic technological features of graph databases. Section 3 

presents an overview of graph databases categories as well as some their representa-

tives, i.e., some commercial products. Section 4 presents some facts concerning the 

paper title and offers some research challenges. Finally, Section 5 concludes the pa-

per.  

2 Graph database technology 

According to other DBMS, we can distinguish a number of basic components of 

graph database technology. They include graph storage, graph querying, scalability, 

and transaction processing. We will discuss them in the following subsections. 

2.1 Graph storage 

An important feature of graph databases is that provide native processing capabilities, 

at least a property called index-free adjacency, meaning that every node is directly 

linked to its neighbour node. A database engine that utilizes index-free adjacency is 

one in which each node maintains direct references to its adjacent nodes; each node, 

therefore acts as an index of other nearby nodes, which is much cheaper than using 

global indexes. This is appropriate for local graph queries where we need one index 

lookup for starting node, and then we will traverse relationships by dereferencing 

physical pointers directly. In RDBMS we would probably need joining more tables 

trough foreign keys and, possibly, additional index lookups.  

Obviously, more advanced indexes are used. For example, it is desirable to retrieve 

graphs quickly from a large database via graph-based indices, e.g. path-based meth-

ods. The approach used in [17] introduces so called gIndex using frequent substruc-

tures as the basic indexing features.  Unfortunately, most of these techniques are usa-

ble only for small graphs. 

Some graph stores offer a graph interface over non-native graph storage, such as a 

column store in the Virtuoso Universal Server
4
 in application for RDF data. Often 

other DBMS is used as back-end storage. For example, the graph database FlockDB
5
 

stores graph data, but it is not optimized for graph-traversal operations. Instead, it is 

optimized for very large adjacency lists. FlockDB uses MySQL as the basic database 

storage system just for storing adjacency lists. 

                                                           
3 http://www.neo4j.org/ (retrieved on 9.3.2015) 
4 http://virtuoso.openlinksw.com/ (retrieved on 9.3.2015) 
5 https://github.com/twitter/flockdb (retrieved on 9.3.2015) 

https://github.com/twitter/flockdb


2.2 Graph querying 

Query capabilities are fundamental for each DBMS. Those used in graph databases, 

of course, come from the associated graph model [2]. The simplest type of a query 

preferably uses the index-free adjacency. A node vk є V is said to be at a k-hop dis-

tance from another node v0 є V, if there exists a shortest path from v0 to vk comprising 

of k edges. In practice, the basic queries are the most frequent. They include look for a 

node, look for the neighbours (1-hop), scan edges in several hops (layers), retrieve an 

attribute values, etc. Looking for a node based on its properties or through its identifi-

er is called point querying.  

Retrieving an edge by id, may not be a constant time operation. For example, Ti-

tan
6
 will retrieve an adjacent node of the edge to be retrieved and then execute a node 

query to identify the edge. The former is constant time but the latter is potentially 

linear in the number of edges incident on the node with the same edge label. 

As more complex queries we meet very often subgraph and supergraph queries. 

They belong to rather traditional queries based on exact matching. Other typical que-

ries include breadth-first/depth-first search, path and shortest path finding, finding 

cliques or dense subgraphs, finding strong connected components, etc. Algorithms 

used for such complex queries need often iterative computation. This is not easy, e.g., 

with the MapReduce (MR) framework used usually in NoSQL databases for BigData 

processing. But the authors of [14] show for finding connected components that some 

efficient MR algorithms exist.  In Big Graphs often approximate matching is needed. 

Allowing structural relaxation, then we talk about structural similarity queries.   

Inspired by the SQL language, graph databases are often equipped by a declarative 

query language. Today, the most known graph declarative query language is Cypher 

working with Neo4j database. Cypher commands are loosely based on SQL syntax 

and are targeted at ad hoc queries of the graph data. A rather procedural graph lan-

guage is the traversal language Gremlin
7
. 

The most distinctive output for a graph query is another graph, which is ordinarily 

a transformation, a selection or a projection of the original graph stored in the data-

base. This implies that graph visualization is strongly tied to the graph querying [13].  

2.3 Scalability 

Sharding (or graph partitioning) is crucial to making graphs scale. Scaling graph data 

by distributing it across multiple machines is much more difficult than scaling the 

simpler data in other NoSQL databases, but it is possible. The reason is the very na-

ture way the graph data is connected. When distributing a graph, we want to avoid 

having relationships that span machines as much as possible; this is called the mini-

mum point-cut problem. But what looks like a good distribution one moment may no 

longer be optimal a few seconds later. Typically, graph partition problems fall under 

the category of NP-hard problems. Scaling is usually connected with three things:  

                                                           
6 http://thinkaurelius.github.io/titan/ (retrieved on 9.3.2015) 
7 http://gremlindocs.com/ 



 scaling for large datasets,  

 scaling for read performance,  

 and scaling for write performance.  

In practice, the former is most often discussed.  Today, it is not problem in graph 

databases area. For example, Neo4j currently has an arbitrary upper limit on the size 

of the graph on the order of 10
10

. This is enough to support most of real-world graphs, 

including a Neo4j deployment that has now more than half of Facebook's social graph 

in one Neo4j cluster. 

Scaling for reads usually presents no problem. For example, Neo4j has historically 

focused on read performance. In master-slave regime read operations can be done 

locally on each slave. To improve scalability in highly concurrent workloads, Neo4j 

uses two levels of caching. 

Scaling for writes can be accomplished by scaling vertically, but at some point, for 

very heavy write loads, it requires the ability to distribute the data across multiple 

machines. This is the real challenge. For example, Titan is a highly scalable OLTP 

graph database system optimized for thousands of users concurrently accessing and 

updating one Big Graph.  

2.4 Transaction processing 

As in any other DBMS, there are three generic use cases for graphs:  

 CRUD (create, read, update, delete) applications,  

 query processing - reporting, data warehousing, and real-time analytics,  

 batch mode analytics or data discovery.  

Graph databases are often optimized and focused on one or more of these uses. 

Particularly, the first two uses are focused on transactions processing, i.e. OLTP data-

bases. When dealing with many concurrent transactions, the nature of the graph data 

structure helps spread the transactional overhead across the graph. As the graph grows 

transactional conflicts typically falls away, i.e. extending the graph tends to the more 

throughputs. But not all graph databases are fully ACID. However, the variant based 

on the BASE properties often considered in the context of NoSQL databases is not 

too appropriate for graphs.  

In general, distributed graph processing requires the application of appropriate par-

titioning and replication strategies such as to maximise the locality of the processing, 

i.e., minimise the need to ship data between different network nodes. 

For example, Neo4j uses master-slave replication, i.e. one machine is designated as 

the master and the others as slaves. In Neo4j, all writes directed towards any machine 

are passed through the master, which in turn ships updates to the slaves when polled. 

If the master fails, the cluster automatically elects a new master.  

Neo4j requires a quorum in order to serve write load. It means that a strict majority 

of the servers in the cluster need to be online in order for the cluster to accept write 

operations. Othervise, the cluster will degrade into read-only operation until a quorum 

can be established. Emphasize, that today’s graph databases do not have the same 



level of write throughput as other types of NoSQL databases. This is a consequence of 

master-slave clustering and proper ACID transactions. 

Some more complex architectures occur in the world of graph databases. Typical-

ly, a simple database is used to absorb load, and then feed the data into a graph data-

base for refinement and analysis. The architecture Neo4j 2.2 contains even a bulk 

loader which operates at throughput of million records per second. 

3 Categories of graph databases 

There is a lot of graph databases. The well-maintained and structured Web site
8
  in-

cluded 20 products belonging among GDBMSs in 2011. The development of graph 

databases until 2011 is described in [1]. Wikipedia
9
 describes 45 such tools. One half 

of them are ACID compliant.  

We distinguish general purpose GDBMs, like Neo4j, InfiniteGraph
10

, Sparksee
11

, 

Titan, GraphBase
12

, and Trinity
13

, and special ones, e.g. the Web graph database In-

foGrid
14

 and FlockDB, or multimodel databases such as document-oriented databases 

enabling traversing between documents. For example, OrientDB
15

 brings together the 

power of graphs and the flexibility of documents into one scalable database even with 

an SQL layer. HyperGraphDB
16

 stores not only graphs but also hypergraph structures. 

All the graph information is stored in the form of key-value pairs.  

An interesting question is which graph databases are most popular today. In June 

2015, the web page DB-Engines Ranking of GDBMS
17

 considering 17 graph products 

presented Neo4j, OrientDB, and Titan on the first three places. GDBMS Sparksee is 

on the 6th place. 

In Section 3.1 we present two typical representatives of the general purpose cate-

gory. From those special ones, more attention will be devoted to RDF triplestores in 

Section 3.2. The framework Pregel is explained in Section 3.3. 

3.1 General graph purpose databases - examples 

We describe shortly two successful graph GDBMSs - Neo4j and Sparksee - in some 

detail. In both GDBMSs a graph is a labelled directed attributed multigraph, where 

edges can be either directed or undirected.  

                                                           
8 http://nosql-database.org/ (retrieved on 9.3.2015) 
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16 http://www.hypergraphdb.org/index 
17 http://db-engines.com/en/ranking/graph+dbms (retrieved on 12.6.2015) 
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Example 1: Neo4j 

Neo4j (now in version 2.2) is the world’s leading GDBMS. It is an open-source, 

highly scalable, robust (fully ACID compliant) native graph database.  

Neo4j stores data as nodes and relationships. Both nodes and relationships can hold 

properties in a key-value form. Values can be either a primitive or an array of one 

primitive type. Nodes are often used to represent entities, but depending on the do-

main the relationships may be used for that purpose as well. The nodes and edges 

have internal unique identifiers that can be used for the data search. Nodes cannot 

reference themselves directly [5]. The semantics can be expressed by adding directed 

relationships between nodes  

Graph processing in Neo4j entails mostly random data access which can be unsuit-

able for Big Graphs. Graphs that cannot fit into main memory may require more disk 

accesses, which significantly influences graph processing. Big Graphs similarly to 

other Big Data collections must be partitioned over multiple machines to achieve 

scalable processing (see Section 2.3). 

Example 2: Sparksee 

In addition to the basic graph model, Sparksee also introduces the notion of a vir-

tual edge that connects nodes having the same value for a given attribute. These edges 

are not materialized. A Sparksee graph is stored in a single file; values and identifiers 

are mapped by mapping functions into B+-trees. Bitmaps are used to store nodes and 

edges of a certain type. 

The architecture of Sparksee includes the core, that manages and queries the graph 

structures, then an API layer to provide an application programming interface, and the 

higher layer applications, to extend the core capabilities and to visualize and browse 

the results. To speed up the different graph queries and other graph operations, 

Sparksee offers these index types:  

 attributes, 

 unique attributes,  

 edges to index their neighbours, and  

 indices on neighbours.  

Sparksee implements a number of graph algorithms, e.g. shortest path, depth-first 

searching, finding strong connected components. 

3.2 Triplestores 

Some graph-oriented products are intended for special graph applications, mostly 

RDF data expressed in the form of subject (S) - predicate (P) – object (O). RDF 

graphs can be viewed as a special kind of a property graph. At the logical level, an 

RDF graph is then represented as one table. For example, AllegroGraph
18

   works 

with RDF graphs. BrightStarDB
19

, Bigdata
20

 and SparkleDB
21

  (formerly known as 

                                                           
18 http://franz.com/agraph/ (retrieved on 9.3.2015) 
19 http://brightstardb.com/ (retrieved on 9.3.2015) 



Meronymy) serve for similar purposes. These triple stores employ intelligent data 

management solutions which combine full text search with graph analytics and logical 

reasoning to produce deeper results. Sometimes, quad stores are used holding a fourth 

attribute - the graph name (N) corresponding normally with the namespace of the 

ontology. AllegroGraph deals even with quints (S, P, O, N, ID), the ID can be used to 

attach metadata to a triple.   

Now, GraphDB™
22

 is the world’s leading RDF triple store that can perform se-

mantic inferring at scale allowing users to create new semantic facts from existing 

facts. GraphDB™ is built on OWL (Ontology Web Language). It uses ontologies that 

allow the repository to automatically reason about the data. AlegroGraph also sup-

ports reasoning and ontology modelling.   

However, existing triple store technologies are not yet suitable for storing truly 

large data sets efficiently. According to the W3C Wiki, AllegroGraph leads the larg-

est deployment with loading and querying 1 Trillion triples. The load operation alone 

took about 338 hours.  

We remind also that triple stores create only a subcategory of graph databases. Ra-

ther a hybrid solution is represented by Virtuoso Universal Server
23

. Its functionality 

covers not only processing RDF data, but also relations, XML, text, and others.  

A list of requirements often required by customers considering a triple store is in-

troduced in [10]: 

 inferring, 

 integration with text mining pipelines, 

 scalability, 

 extensibility, 

 enterprise resilience, 

 data integration and identity resolution, 

 semantics in the cloud, 

 semantic expertise. 

3.3 Pregel and Giraph 

Pregel and Giraph are systems for large-scale graph processing. They provide a fault-

tolerant framework for the execution of graph algorithms in parallel over many ma-

chines. Giraph utilizes Apache MR framework implementation to process graphs. 

A significant approach to the design, analysis and implementation of parallel algo-

rithms, hardware and software in Pregel is now the Bulk Synchronous Processing 

(BSP) model. BSP offers architecture independence and very high performance of 

parallel algorithms on top of multiple computers connected by a communication net-

work. 

                                                                                                                                           
20 http://www.systap.com/ (retrieved on 9.3.2015) 
21 https://www.sparkledb.net/ (retrieved on 9.3.2015) 
22 http://www.ontotext.com/products/ontotext-graphdb/ (retrieved on 9.3.2015) 
23 http://virtuoso.openlinksw.com/ (retrieved on 9.3.2015) 

https://www.sparkledb.net/
http://www.ontotext.com/products/ontotext-graphdb/


BSP is a powerful generalization of MR. A subclass of BSP algorithms can be effi-

ciently implemented in MR [11]. BSP is superfast on standard commodity hardware, 

orders of magnitude faster than the MR alone. It is an easy parallel programming 

model to learn, it has a cost model that makes it simple to design, analyse, and opti-

mize massively parallel algorithms. It can be considered as a strong candidate to be 

the programming model for parallel computing and Big Data in the next years. For 

example, Google is already moving in its internal infrastructure from MR to 

BSP/Pregel. 

4 Limitations of graphs databases 

Despite of the long-term research and practice in this area, there are many important 

and hard problems that remain open in graph data management. They have influence 

on functionality restrictions of graph databases (Section 4.1). Others are specifically 

related to Big Analytics (Section 4.2).  Challenges concerning some specific problems 

of graph database technology are summarized in Section 4.3. 

4.1 Functionality restrictions 

Declarative querying: Most commercial graph databases cannot be queried using a 

declarative language. Only few vendors offer a declarative query interface. This im-

plies also a lack of query optimization abilities. 

Data partitioning: Most graph databases do not include the functionality to partition 

and distribute data in a computer network. This is essential for supporting horizontal 

scalability, too. It is difficult to partition a graph in a way that would not result in 

most queries having to access multiple partitions. 

Vectored operations: They support a procedure which sequentially writes data from 

multiple buffers to a single data stream or reads data from a data stream to multiple 

buffers. Horizontally scaled NoSQL databases support this type of data access. It 

seems that it is not the case in graph databases today. 

Model restrictions: Possibilities of data schema and constraints definitions are re-

stricted in graph databases.  Therefore, data inconsistencies can quickly reduce their 

usefulness. Often the graph model itself is restricted. Let us recall, e.g., Neo4j nodes 

cannot reference themselves directly. There might be real world cases where self-

reference is required. 

Querying restrictions: For example, FlockDB overcomes the difficulty of horizontal 

scaling the graph by limiting the complexity of graph traversal.  In particular, 

FlockDB does not allow multi-hop graph walks, so it cannot do a full "transitive clo-

sure".  However, FlockDB enables very fast and scalable processing of 1-hop queries. 



4.2 Big Analytics requirements 

Graph extraction: A question is how to efficiently extract a graph, or a collection of 

graphs, from non-graph data stores. Most graph analytics systems assume that the 

graph is provided explicitly. However, in many cases, the graph may have to be con-

structed by joining and combining information from different resources which are not 

necessarily graphical. Even if the data is stored in a graph database, often we only 

need to load a set of subgraphs of that database graph for further analysis.  

High cost of some queries: Most real-world graphs are highly dynamic and often gen-

erate large volumes of data at a very rapid rate. One challenge here is how to store the 

historical trace compactly while still enabling efficient execution of point queries and 

global or neighbourhood-centric analysis tasks. Key differences from temporal 

DBMSs developed in the past are the scale of data, focus on distributed and in-

memory environments, and the need to support global analytics. The last task usually 

requires loading entire historical snapshots into memory.  

Real time processing: As noted, graph data discovery takes place essentially in batch 

environments, e.g., in Giraph. Some products aimed at data discovery and complex 

analytics that will operate in real-time. An example is uRIKA
24

 – a Big Data Appli-

ance for Graph Analytics. It uses in-memory technology and multithreaded processor 

to support non-batch operations on RDF triples. 

Graph algorithms: More complex graph algorithms are needed in practice. The ideal 

graph database should understand analytic queries that go beyond k-hop queries for 

small k. Authors of [9] did a performance comparison of 12 open source graph data-

bases using four fundamental graph algorithms (e.g. simple source shortest path prob-

lem and Page Rank) on networks containing up to 256 million edges. Surprisingly, the 

most popular graph databases have reached the worst results in these tests. Current 

graph databases (like relational databases) tend to prioritize low latency query execu-

tion over high-throughput data analytics.  

Parallelisation: In the context of Big Graphs there is a need for parallelisation of 

graph data processing algorithms when the data is too big to handle on one server. 

There is a need to understand the performance impact on graph data processing algo-

rithms when the data does not all fit into the memory available and to design algo-

rithms explicitly for these scenarios. 

Heterogeneous and uncertain graph data: There is a need to find automated methods 

of handling the heterogeneity, incompleteness and inconsistency between different 

Big Graph data sets that need to be semantically integrated in order to be effectively 

queried or analysed. 

                                                           
24 http://www.cray.com/products/analytics/urika-gd 



4.3 Other challenges 

Other challenges in the development of graph databases include:  

Design of graph databases: Similarly to traditional databases, some attempts to de-

velop design models and tools occur in last time. In [3], the authors propose a model-

driven, system-independent methodology for the design of graph databases starting 

from ER-model conceptual schema. 

Need for a benchmark: Querying graph data can significantly depend on graph prop-

erties. The benchmarks built, e.g., for RDF data are mostly focused on scaling and not 

on querying. Also benchmarks covering a variety of graph analysis tasks would help 

towards evaluating and comparing the expressive power and the performance of dif-

ferent graph databases and frameworks.  

Developing heuristics for some hard graph problems: For example, partitioning of 

large-scale dynamic graph data for efficient distributed processing belongs among 

these problems, given that the classical graph partitioning problem is NP-hard.  

Graph pattern matching: New semantics and algorithms for graph pattern matching 

over distributed graphs are in development, given that the classical subgraph isomor-

phism problem is NP-complete.  

Compressing graphs: Compressing graphs for matching without decompression is 

possible. Combining parallelism with compressing or partitioning is also very inter-

esting. 

Integration of graph data: In the context of Big Data, query formulation and evalua-

tion techniques to assist users querying heterogeneous graph data are needed.  

Visualization: Improvement of human-data interaction is fundamental, particularly a 

visualization of large-scale graph data, and of query and analysis results. 

Graph streams processing: Developing algorithms for processing Big Graph data 

streams with goal to compute properties of a graph without storing the entire graph.  

5 Conclusions 

Graph databases are becoming mainstream. As data becomes connected in a more 

complicated way and as the technology of graph databases matures, their use will 

increase. New application areas occur, e.g. the Internet of Things, or rather Internet of 

Connected Things. Comparing to traditional RDBMS, there is a difficulty for poten-

tial users to identify the particular types of use case for which each product is most 

suitable. Performance varies greatly across different GDBMSs depending upon the 

size of the graph and how well-optimized a given tool is for a particular task. It seems 

that especially for Big Graphs and Big Analytics a lot of previous results and designs 

will have to be re-considered and re-thought in next research and development.  
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