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Chapter 1
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Abstract

In this chapter, the physical analysis of planetary hyperspectral images by massive

inversion is addressed. A direct radiative transfer model that relates a given combina-

tion of atmospheric or surface parameters to a spectrum is used to build a training set of

synthetic observables. The inversion is based on the statistical estimation of the func-

tional relationship between parameters and spectra. To deal with high dimensionality

(image cubes typically present hundreds of bands), a two step method is proposed,

namely K-GRSIR. It consists of a dimension reduction step followed by a regression

with a non-linear least-squares algorithm. The dimension reduction is performed with

the Gaussian Regularized Sliced Inverse Regression algorithm, which finds the most

relevant directions in the space of synthetic spectra for the regression. The method is

compared to several algorithms: a regularized version of k-nearest neighbors, partial

least-squares, linear and non-linear support vector machines. Experimental results on

simulated data sets have shown that non-linear support vector machines is the most

accurate method followed by K-GRSIR. However, when dealing with real data sets,

K-GRSIR gives the most interpretable results and is easier to train.

Key Words: Planetary hyperspectral images, Mars surface, regularized sliced inversion

regression, support vector machines regression, kernel least-squares.
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1. Introduction

For two decades, imaging spectroscopy has been a key technique for exploring planets

[Murchie et al., 2007, Bibring et al., 2004b, Brown et al., 2004, Carlson et al., 1992]. Ac-

quisition of several hundred thousands continuous spectra allows a fine characterization

of the physical properties of the scene: Detection, mapping and characterization of min-

erals, as well as volatile species, whose presence often provide clues for the resolution of

key climatic and geological issues. For instance, the OMEGA sensor acquires the spectral

radiance coming from the planet in more than 200 contiguous spectral channels. A pixel

of such an image is represented by a spectrum/vector x ∈ R
d , each component corresponds

to a particular wavelength, d being the total number of wavelengths. Chemical composi-

tion, granularity, texture, and physical state are some of the parameters that characterize the

morphology of spectra and thus the area of interest.

Deducing the physical parameters y from the observed spectra x is a central problem

in geophysics, called an inverse problem. Since it generally cannot be solved analytically,

optimization or statistical methods are necessary. Solving inverse problems requires an

adequate understanding of the physics of the signal formation, i.e. a functional relation

between x and y must be specified: x = g(y). Given g, different methods can be used to

deduce the parameters from new observations. Current solutions to inverse problems can

be divided into three main categories [Kimes et al., 2000]:

1. Optimization algorithms: These methods minimize an objective quality function that

measures the fit between x and g(y). Inverse problems are often ill-posed, therefore

estimations can be unstable and a regularization is needed. For instance, a prior

distribution on model parameters can be used. These approaches are computationally

expensive since they independently invert new spectra. Therefore, they cannot be

used to invert an image with several hundred thousand pixels. Moreover, they can

sometimes fall into local minimum if the objective function is not convex.

2. Look-up table (LUT) / k-nearest neighbors approaches (k-NN): A large database

(LUT) is generated by a physical model for many combinations of parameter values.

Each observed spectrum is then compared with the LUT spectra in order to find the

best match (the nearest neighbor), according to an objective function minimization,

typically the L2 norm. Parameters are then deduced from this best match. The speed

gain is significant in comparison to traditional optimization methods, since retriev-

ing a value from memory is often faster than undergoing an expensive computation.

The main disadvantages of this approach are the multiplicity of solutions and their

instability.

3. Training approaches: A functional relation y = f (x) between spectra and parameters

is assumed, such as f−1 ≈ g, and a LUT is used as a training set to estimate f . The

advantage of such a training approach is that, once the relationship has been estab-

lished, it can be used for very large sets and for all new images with the same physical

model. Among training approaches, neural networks [Hastie et al., 2003, chapter 11]

or support vector machines (SVM) [Hastie et al., 2003, chapter 12] seem promising

but the underlying learning process remains time consuming [Combal et al., 2002,

Durbha et al., 2007, Pragnère et al., 1999].
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All approaches share the same difficulty when dealing with the increase of dimension-

ality: Parametric estimations are difficult [Hughes, 1968], distances between samples tend

to be equal [Francois et al., 2007, Beyer et al., 1999] and the number of training samples

needed for the training approaches becomes too high in practical situation [Fukunaga, 1990,

chapter 5]. These problems are related to the curse of dimensionality [Donoho, 2000]. They

make inverse problems in high dimension even more difficult and therefore algorithms must

be robust to the dimension of the data.

One additional difficulty associated to planetary data is the very limited availability of

ground truth or ground measurements to validate both the physical model and the training

process. This motivates strategies to (i) assess the degree of adequacy between synthetic

and real samples (ii) check if the estimated functional f - learned on the simulated data

set - is still appropriate when inverting real images. As it will be seen in the experimental

section, this assumption is not always fulfilled.

Several approaches are presented in this chapter to estimate the functional f : The

well-known Support Vector Machines regression (SVM-R) [Hastie et al., 2003, Chap-

ter 12], which works in full dimension, the Gaussian Regularized Sliced Inverse Regres-

sion (GRSIR) [Bernard-Michel et al., 2009d], which reduces the dimension before estima-

tion, the Partial Least-Squares (PLS) regression [Hastie et al., 2003, Chapter 3] and the

k-NN [Hastie et al., 2003, Chapter 13] still used by astrophysicists to perform massive in-

version of hyperspectral images [Douté et al., 2001, Carlson et al., 2005]. Methods not re-

lying on statistical models (SVM or k-NN) have two main advantages over parametric ones

(GRSIR or PLS): No prior information is needed and no parameters estimation is necessary.

However, in general, results are hardly interpretable and thus no information about the rela-

tionship between the input and the output is available. On the contrary, parametric methods

reduce the dimension of spectra and the resulting subspace provides some physical infor-

mation which can be used by astrophysicists [Bernard-Michel et al., 2009b]. Moreover, the

training time is generally favorable to the parametric methods. In order to take advantage in

a single algorithm of the learning ability of advanced non-parametric algorithms and of the

interpretability of parametric algorithms, an extended version of GRSIR algorithm is pro-

posed. First the dimension is reduced using GRSIR algorithm and then kernel least-squares

(KLS) is used to learn the functional between reduced spectra and physical parameters. Mo-

tivations are the possibility to interpret the functional relationship in the reduced subspace

and to reduce the training time while keeping the accuracy high.

Experiments are conducted on real hyperspectral images acquired from orbit of planet

Mars by the OMEGA sensor [Bibring et al., 2004b]. In order to generate the simulated data,

two physical models of solar light reflection by the surface have been considered, each one

corresponding to a different geographical area of the planet.

Section 2 presents the different methods. Emphasis is put on SVM, GRSIR and the

proposed K-GRSIR algorithm. The data sets are presented in Section 3 and experimental

results are discussed in Section 4.

2. Inversion methods

For each method, a training set
(

xi,yi

)n

i=1
∈R

d ×R
q is given and we try to estimate f : y =

f (x). Focussing on R-valued functions, q functions are necessary to deduce q parameters
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y of the physical model from the spectra x. Details about the simulation of the training and

validation samples are provided in Section 3.

2.1. Support Vector Machines Regression

SVM are supervised methods for regression or estimation stemming from the machine

learning theory. For inversion problems, the algorithm, which is called the ε-SVR, ap-

proximates the functional using solutions of the form

f (x) =
n

∑
i=1

αik(x,xi)+b (1)

where k is a kernel function and
(

(αi)i=1,...,n, b
)

are the parameters of f which are estimated

during the training process. The kernel k is used to produce non-linear functions. Given a

training set, the training of an ε-SVR entails the following optimization problem:

min

[

1

n

n

∑
i=1

l
(

f (xi),yi

)

+λ‖ f‖2

]

(2)

with l
(

f (x),y
)

=

{

0 if | f (x)− y| ≤ ε

| f (x)− y|− ε otherwise.

This optimization problem is solved using the method of Lagrange multipli-

ers [Vapnik, 1998, chapter 10]. The ε-SVR satisfies the sparsity constraint: Only some

αi are non-null which corresponding samples xi are called “Support Vectors” (SVs). Some

limitations come from the learning step involving a quadratic optimization. With a large

training set, the training time can be very long. Moreover, the problem is exacerbated

when several optimizations for parameter selection are considered. Despite of some recent

works on quadratic solvers [Bottou et al., 2007], for large data set processing time remains

large. Advanced methods can be used to select the optimal kernel parameters in an auto-

matic procedure which reduces the processing time but requires more complex algorithmic

tools [Moser and Serpico, 2009].

The choice of the kernel function is a crucial step with ε-SVR. A kernel func-

tion is a similarity measure between two samples and corresponds to a dot prod-

uct in some feature space. To be an acceptable kernel, the function should be

positive semi-definite [Camps-Valls and Bruzzone, 2009, chapter 2]. In a previous

work [Bernard-Michel et al., 2009a], several kernels were investigated. It was found that

Gaussian kernel provides the best results both in terms of accuracy and processing time:

k(x,y) = exp

(

− ‖x−y‖2

2σ2

)

. (3)

This kernel is used for the experiments along with a linear kernel, i.e an inner product, the

latter serves a basis of linear estimators.

Before running the algorithm, some hyperparameters need to be fitted:

• ε controls the resolution of the estimation. Large values produce rough approxima-

tions while small values produce fine estimations. It can be set using some prior on

the signal to noise ratio.
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• λ controls the smoothness of the solution. Large values imply nearly linear functions.

• σ is the Gaussian kernel parameter.

2.2. Gaussian Regularized Sliced Inverse Regression

To circumvent the “curse of dimensionality” effects, an alternative approach is to reduce

the dimension of the data before the estimation. This is done by mapping the data onto a

lower dimensional space and then doing the estimation:

y = f
(

βtx
)

, (4)

where βtx denotes the projection on the subspace spanned by β. In the following, the

dimension of the projection subspace is denoted by p< d whatever the dimension reduction

method is.

The Principal Component Analysis (PCA) is surely one of the most used approach:

β corresponds to the p first eigenvectors of the covariance matrix Σ of x. Vectors βℓ

(ℓ = 1, . . . , p) maximize the variance of the projected components under unitary and or-

thogonality constraints on βℓ:

β̂
pca
ℓ = arg max

βℓ∈Rd

[

βt
ℓΣ̂βℓ

]

with βT
ℓ βi = δℓi, i = 1, . . . , ℓ (5)

where Σ̂ is the estimated covariance matrix and δℓi is the Kronecker delta. It can be checked

that they are the eigenvectors of Σ̂.

However, in the case of a regression problem, PCA is generally not satisfying since only

the explanatory variables x are considered and the dependent variable y is not taken into ac-

count. Specific feature extraction techniques have been developed for regression problems,

and among them Sliced Inverse Regression (SIR) is very effective in high dimensional

spaces [Li, 1991], see also [Girard and Saracco, 2014] for applications to astrophysics. The

method consists of applying PCA to the inverse regression curve E(x|y) (instead of applying

it to the original predictor x).

In the SIR methodology, E(x|y) is estimated by a piecewise constant function thanks to

a partitioning of the range of y into h+1 non-overlapping slices S j (see Fig. 1). Under this

approximation, SIR aims at maximizing the between slice variance under unitary variance

and orthogonality constraints on the projected variables:

β̂sir
ℓ = arg max

βℓ∈Rd

[

βt
ℓΓ̂βℓ

]

with βT
ℓ Σ̂βi = δℓi, i = 1, . . . , ℓ (6)

where Γ̂ is the estimate of the covariance matrix of the inverse regression curve Γ =
cov
(

E(x|y)
)

:

Γ̂ =
H

∑
j=1

n j

n
(x̄ j − x̄)(x̄ j − x̄)T , x̄ j =

1

n j
∑

xi|yi∈S j

xi (7)

with x̄ j the between slice mean of slice S j and x̄ the sample mean. Similarly to PCA, the

projection axes are given by the eigenvectors corresponding to the largest p eigenvalues of

Σ̂−1Γ̂ [Li, 1991].
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Figure 1. SIR: In this example, y is divided into 5 slices and the projection on β makes the

estimation of the relationship y = f (βtx) much easier (dim(x) = 184).

The quality of the projection is assessed with the SIR criterion (SIRC): It is the ratio of

the between slice variance and the total variance:

SIRC(βℓ) =
βT
ℓ Γ̂βℓ

βT
ℓ Σ̂βℓ

, (8)

with 0 ≤ SIRC ≤ 1. From eq. (6), the higher the SIRC, the better the projection is. In

high dimensional vector spaces, inverse problems are generally ill-posed [Tarantola, 2005,

Aster et al., 2005], i.e. Σ̂ is ill-conditioned making its inversion difficult. It thus has been

proposed to compute a Gaussian Regularized version of Sliced Inverse Regression (GR-

SIR). Theoretical details can be found in [Bernard-Michel et al., 2009d]. The concept of

this method is to incorporate some Gaussian prior on the projections in order to dampen

the effect of noise in the input data, and to make the solution more regular or smooth.

The ill-posed problem Σ̂−1 is then replaced by a slightly perturbed well-posed problem
(

ΩΣ̂+ τId

)−1
Ω, where τ is a positive regularization parameter, Id is the identity matrix

and Ω is a d ×d matrix modeling the prior on the projection: It describes which directions

are the most likely to contain β [Bernard-Michel et al., 2009d]. Finally, GRSIR consists of

computing the eigenvectors corresponding to the largest eigenvalues of
(

ΩΣ̂+ τId

)−1
ΩΓ̂. (9)

Using the eigenvalue decomposition of Σ̂, several definitions of Ω have been proposed

leading to several well known regularizations. Let us write

Σ̂ =
d

∑
k=1

δkvkvt
k (10)

with δ1 ≥ . . . ≥ δd , the eigenvalues and vk their associated eigenvectors. Then for all real

valued function ϕ, Ω is defined as:

Ω(ϕ) =
m

∑
k=1

ϕ(δk)vkvt
k (11)
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Table 1. SIR Regularization

ϕ(δk) m Ω Eigen problem Regularization

1/δk = d Σ̂−1 Σ̂−1Γ̂ -

1 = d Id

(

Σ̂+ τId

)−1
Γ̂ Ridge

1 < d ∑m
k=1 vkvt

k eq. (9) PCA-Ridge

δk = d Σ
(

Σ̂2 + τId

)−1
Σ̂Γ̂ Tikhonov

δk < d ∑m
k=1 δkvkvt

k eq. (9) PCA-Tikhonov

with m ∈ {1, . . . ,d}. Table 1 sums up the different proposed strategies. ϕ controls which

directions of Σ̂ that are favored: For instance, with the conventional SIR approach (first row

of Table 1) directions corresponding to small variances are most likely, while no directions

are privileged with ridge regularization. PCA based regularization approaches correspond

to the situation where only directions with large variance are kept, i.e. a dimension reduction

of Σ̂ is done. For Tikhonov regularization, directions corresponding to large variances are

most likely (in contrast to conventional SIR) but all directions are kept (in contrast to PCA

based approaches). From previous works [Bernard-Michel et al., 2009a], the regularization

is important but all the methods perform equally: no matter the method, it is just important

to tune it correctly. In this chapter, ridge regularization is used because of its simplicity:

only one parameter is to be tuned.

Once β is computed, a piecewise linear estimator is used, i.e. f in eq. (4) is a piecewise

linear function (additional details can be found in [Bernard-Michel et al., 2009b]).

2.3. Partial Least-Squares regression

The PLS method is closely related to PCA (orthogonal projection onto lower dimensional

space) and GRSIR (y is accounted for). PLS searches for the projection of the explana-

tory variable x onto a lower dimensional space that maximizes the covariance between x

and y [Garthwaite, 1994]. It starts by computing the linear regression between y1 = y and

x [Hastie et al., 2003, Chapter 3]:

β̂
pls
1 = arg max

β∈Rd

[

cov2
(

y1,〈β,x〉
)

]

. (12)

Then the process is iterated on the residual y2 between the prediction ŷ1 and the true value

y1 (y2 = y1 − ŷ1). Finally the (ℓ+1)th PLS direction is found

β̂
pls
ℓ = arg max

β∈Rd

[

cov2
(

yℓ,〈β,x〉
)

]

. (13)

The iteration stops when the number p of components is reached. The regression in the

subspace is necessarily linear and may limit the efficiency of the method if the relationship

between x and y is non linear.

2.4. k-Nearest Neighbors

The basic idea is to find from a LUT the k nearest spectra and to fix the estimated y as the

mean parameter value of k nearest spectra parameter. The distance between two spectra is



8 M. Fauvel, S. Girard, S. Douté, and L. Gardes

taken as the Euclidean distance: ‖x− xi‖2, where x is a spectrum from the image (to be

inverted) and xi a spectrum from the LUT. In the experiments, k is fixed to one, so only one

neighbor is used for the estimation.

Although it has first been proposed by astrophysicists when performing massive inver-

sion on hyperspectral images, k-NN is known to perform badly in high dimensional space.

The reason is the concentration of the measure which makes all pairwise distances very

similar [Francois et al., 2007, Beyer et al., 1999]. To dampen the effect of the dimensional-

ity, the dimension of the spectra is reduced by PCA and then k-NN is applied on the reduced

spectra

x̃ =

[

v1√
δ1

∣

∣

∣

v2√
δ2

∣

∣

∣
. . .
∣

∣

∣

vp
√

δp

]t

x (14)

where vi is the ith first eigenvector of the covariance matrix Σ̂ and δi its corresponding

eigenvalue. The method is denoted by k-NNpca in the following.

2.5. K-GRSIR

In the original GRSIR formulation [Bernard-Michel et al., 2009d], only the first axis is con-

sidered since it usually displays a very high SIRC (> 0.9). However, the following axes may

have significant SIRC’s. In this work, we thus propose to consider multiple axes instead of

one, based on the SIRC value, and to use non-linear regression models similar to (1) fitted

by a least-squares criteria.

Note that the original goal of GRSIR is not to reduce the dimensionality of the data but

it is to find the central subspace (see section 2.2.). Contrary to PCA, it is not possible to link

the eigenvalues and the reconstruction error of the data (because of the joint use of x and

y). Therefore, the number p of selected eigenvectors cannot be chosen from the cumulative

variance criteria. By looking at the scatter plot relating the projected data to the parameters,

it appears that, for a too small SIRC, no signal can be seen and most of the variation comes

from the noise, see Fig. 2. As a consequence, p is chosen by thresholding the SIRC, i.e. it

is the number of eigenvectors whose SIRC is higher than 0.1 (10% of the total variance, see

eq. (8)).

The regression function is similar to eq. (1), but a least-squares estimation is done, i.e.

the ε-loss function of eq. (2) is changed to the quadratic loss:

min

[

1

n

n

∑
i=1

(

f (βtxi)− yi

)2
+λ‖ f‖2

]

. (15)

A close form solution of eq. (15) exits [Evgeniou et al., 2000]:

α0 = (K0 +Λ)−1y0 (16)

where α0 is the vector of parameters, K0 is the kernel matrix with the last row and last

column completed with ones, the last element being set to zero, Λ is a diagonal matrix

with its diagonal terms equal to λ except the last term which is null and y0 is the vector

of dependent variables completed with one zero. This algorithm is called in the literature

Kernel Least-Squares (KLS).
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Figure 2. Scatter plot of the explanatory data projected on the central subspace direction

versus dependent variable. The considered data are the simulated ones from the south polar

permanent cap, and the physical parameter is the “Grain size of H2O” ice, see Section 3 for

details. Horizontal axis represents the projected data x̃ = βt
ℓx, ℓ ∈ {1,2,5} and vertical axis

the physical parameter y.

3. Data sets

3.1. Mars Hyperspectral Images

In this chapter, a selection of images from the OMEGA sensor is analyzed. They pertain to

two different types of martian terrains:

1. South polar permanent cap (SPPC): Three OMEGA hyperspectral images are con-

sidered. They have been acquired during orbits 41, 61 and 103 that cover the high

southern latitudes of Mars. The spatial resolution is about 2km per pixel and 184

wavelengths are considered in the range 0.95-4.15µm. For each image, a postpro-

cessing aiming at correcting the atmospheric contribution in the spectra has been

applied. See [Douté et al., 2007] for further details. These OMEGA observations re-

vealed [Bibring et al., 2004a] that the south polar region of Mars mainly contains

water ice, carbon dioxide ice and dust. A detailed qualitative mapping of H2O

and CO2 ices during the local summer shows that the permanent south polar re-

gion is dominated by superficial CO2 on the bright cap except at its edges where

water ice appears in extended areas. Examining the coexistence modes (geograph-

ical or granular) between H2O, CO2 and dust that best explain the morphology of

the spectra has led to a physical modeling of individual spectra with a surface re-

flectance model [Douté et al., 2007]. This model allows the generation of synthetic

spectra with the corresponding sets of parameters that constitute a synthetic learning

database, see paragraph 3.2. Here, we shall not work on the whole images to reverse

the model because of the need of at least three different physical models required

to simulate the whole image. We focus on the terrain unit characterized by a strong

concentration of CO2: The bright permanent south polar cap. This unit has been de-

termined by a detection method based on wavelets [Schmidt et al., 2007]. For each

image, the area dominated by CO2 ice contains about 10000 to 20000 spectra.

2. South polar seasonal deposits (SPSD): During southern winter, when the polar lat-

itudes fall into darkness, temperature drops down to levels enabling intense conden-
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sation of CO2 in the solid form at the surface. Up to one third of the martian at-

mosphere can be trapped this way. During spring, when the sun returns, the energy

balance of the icy deposits becomes positive and the CO2 sublimates away, first at

the lowest latitudes, and then closer and closer to the pole. OMEGA has acquired

the most comprehensive set of observations to date in the near-infrared on the SPSD

from mid-winter solstice to the end of the recession [Langevin et al., 2007]. Here we

consider the “bright” part of the SPSD and the corresponding physical model derived

from a previous study [Douté et al., 2008]: A substratum made of an intimate mix-

ture of CO2 and dust overlaid by a slab of CO2 compact ice itself covered by a thin

layer of dust contamination. We analyze an image acquired during orbit 1765 that

covers the previous area.

3.2. Synthetic spectra (LUT)

From the above physical models, synthetic spectra have been generated with their corre-

sponding physical parameters. Centered multidimensional Gaussian noise has been added,

its covariance matrix was determined experimentally from the real images. For the valida-

tion sake, separate training and testing data sets have been randomly generated. The nota-

tions are: n (respectively nt) is the number of spectra from the training data (respectively test

data), xi ∈ R
d , i ∈ 1, . . . ,n denotes the spectra from the training data and yi ∈ R, i ∈ 1, . . . ,n

is one of the associated parameters (respectively x̌ j, y̌ j, j ∈ 1, . . . ,nt). Table 2 presents the

number of samples for each data sets, the dimension of the data sets and the considered

physical parameters.

4. Experiments

4.1. Synthetic spectra

In all experiments, parameters were selected by a 5-fold cross validation: Number of se-

lected principal components for k-NNpca, regularization parameters for (K-)GRSIR, kernel

and regularization parameter for SVM or KLS and dimension of the subspace for PLS.

The quality of the estimation is assessed by computing the Normalized Root Mean

Square Errors (NRMSE):

NRMSE =

√

√

√

√

√

√

√

1
nt

nt

∑
i=1

(ŷi − y̌i)2

1
nt

nt

∑
i=1

(y̌i − y)2

with y =
1

nt

nt

∑
i=1

y̌i (17)

where y̌i is the real value and ŷi the estimated one. It is the root mean square error nor-

malized by the standard deviation of y. The indicator NRMSE is close to zero when the

predicted values are accurate and becomes larger when predictions are poor. Results are

reported in Table 3. Table 4 presents for some of the methods, the number of components

kept. In what follows, a method per method analysis of the results is done.
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Table 2. Simulated data characteristics.
n nt d p1 p2 p3 p4 p5

SPPC 3528 3584 184 Prop. of H2O Prop. of CO2 Prop. of dust Grain size of H20 Grain size of C02

SPSD 15250 15250 105 Prop. of CO2 Prop. of dust Prop. of H2O Ice width Grain size of dust

Table 3. NRMSE for each data set and each method. LSVM stands for linear SVM, GSVM

for Gaussian SVM. The two best results are emphasized.

South polar permanent cap (SPPC)

k-NN k-NNpca PLS LSVM GSVM GRSIR K-GRSIR

p1 1.32 0.26 0.34 0.34 0.18 0.28 0.27

p2 1.37 0.30 0.33 0.32 0.18 0.20 0.19

p3 1.45 0.27 0.25 0.24 0.11 0.16 0.10

p4 0.87 0.32 0.38 0.43 0.26 0.35 0.28

p5 0.26 0.37 0.31 0.27 0.14 0.18 0.17

Mean 1.05 0.30 0.31 0.32 0.17 0.23 0.20

South polar seasonal deposits (SPSD)

k-NN k-NNpca PLS LSVM GSVM GRSIR K-GRSIR

p1 0.94 0.28 0.24 0.24 0.19 0.22 0.21

p2 0.94 0.28 0.26 0.24 0.19 0.22 0.21

p3 1.02 0.87 0.86 0.81 0.74 0.96 0.74

p4 0.89 0.17 0.37 0.37 0.16 0.38 0.21

p5 1.15 0.41 0.56 0.48 0.31 0.41 0.38

Mean 0.98 0.40 0.46 0.42 0.32 0.43 0.35

Table 4. Number of components retained for each method for the different parameters.

SPPC SPSD

k-NNpca GRSIR K-GRSIR k-NNpca GRSIR K-GRSIR

p1 4 1 3 3 1 1

p2 5 1 4 3 1 1

p3 5 1 6 28 1 3

p4 3 1 4 3 1 11

p5 4 1 4 3 1 5
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Figure 3. k-NNpca. Cross validation errors as a function of dimension of the reduced

spectra for the proportion of H2O for the first model. Horizontally: The number of selected

components. Vertically: The cross validation errors.

4.1.1. k-NN and k-NNpca

In terms of NRMSE, k-NNpca provides better results than its non-regularized version. The

dimension of the subspace for each parameter is small, excepted for one that is part of the

second physical model. Figure 3 shows the cross validation error as a function of the num-

ber of components selected for the proportion of H2O. Using too few components increases

sharply the NRMSE, while using more components progressively degrades the NRMSE. For

the first data set, 3 components corresponds to 94.9% of the total variance, 4 components

to 95.7% and 5 components to 96.2%. For the second data sets, 3 components corresponds

to 98.6% and 28 to 99.4%.

4.1.2. PLS and linear SVM

Both methods seek for a linear functional and they give similar results. This is somewhat

surprising though since the regression functions found by the two algorithms are different.

Standard optimization for linear SVM makes it computationally too extensive in contrast to

PLS. Compared to k-NNpca, results are similar and no clear winner can be appointed, the

rank of the method depending on the considered parameter.

4.1.3. GSVM

Non-linear SVM regression provides the best results in terms of NRMSE, for each pa-

rameter and for both models. The training time remains high, as it was discussed

in [Bernard-Michel et al., 2009a]. This is especially true for the second simulated data sets,

because a lot training samples are available.

As announced in the introduction, GSVM functional is hardly interpretable. However,

the analysis of the support vectors indicates that saturation of some physical parameters

exists in the model [Bernard-Michel et al., 2009c] (an increase of y does not change the

spectra x): The relation between the explanatory variable x and the dependent variable y is

therefore highly non-linear and very hard to learn, for all algorithms.
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Figure 4. GRSIR relationship (in red) for the parameter grain size of H2O ice for the first

data set. Horizontal axis represents the projected data x̃ = βtx and vertical axis the physical

parameter y.

4.1.4. GRSIR

It provides better results in terms of NRMSE than linear or k-NNpca methods for the first

data set, and similar results for the second data sets. The higher number of training samples

and the lower dimensionality of the second data set may explain why the difference in terms

of NRMSE is smaller.

With GRSIR, it is possible to visualize the regression function eq. (4). Figure 4 presents

the functional relationship found with GRSIR for the parameter “Grain size of H2O” ice of

the first model. It represents in red the piecewise linear function fitted with the projected

data x̃ = βtx and y. The corresponding SIRC is 0.87.

4.1.5. K-GRSIR

It performs slightly less accurately than GSVM in terms of NRMSE, and better than all other

methods. Mean results are clearly better with K-GRSIR and get close to those of GSVM.

Regarding the training time, the method performs in average 4.5 times faster than GSVM.

As a sanity check, we perform a comparison with the KLS learned on the first principal

components, i.e. β are the p first components. Results on the first data sets demonstrate

clearly that GRSIR is better suited for that regression problem. For parameter p1 the NRMSE

is 0.67 for KLS against 0.27 for K-GRSIR. For parameter p2 it is 0.58 against 0.19. Similar

results are obtained for the other parameters, confirming that for regression purpose, GRSIR

is preferable to PCA.

Figure 5 presents the regression function found by K-GRSIR for the parameter “Grain

size of H2O” ice. The function is non-linear due to the use of a Gaussian kernel.
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Figure 5. K-GRSIR relationship (in red) for the parameter grain size of H2O ice for the first

data set. Horizontal axis represents the projected data x̃ = βtx and vertical axis the physical

parameter y.

4.2. Mars Hyperspectral Images

In this section, the inversion of real OMEGA images is addressed. As mentioned in the

introduction, no ground-truth is available. To assess the accuracy of inversion, we must rely

on the physical meaning of the data: Proportions should be between 0 and 1, all estimations

should be positive . . . Another criteria is the stability of the estimation. For the south polar

permanent cap, three images (orbit 41, 61 and 103) for the same geographical area were

acquired in a short time span. No significant physical changes should occur, therefore the

histograms of parameter values for the three inversions should be similar. In the following,

real images corresponding to the SPPC are considered only.

Our original approach consists in learning the functional on the simulated

data sets and then inverses the different images. However, from previous

works [Bernard-Michel et al., 2009c, Bernard-Michel et al., 2009a], it was shown that this

strategy failed to provide stable inversions. Small statistical variations between simulated

and real data explain that problem [Bernard-Michel et al., 2009a]. Such variations affect

the regularization parameters: They are chosen using simulated samples only and are not

necessarily suited to the real images. For instance, for some badly constrained parameters,

it makes the GRSIR axis almost orthogonal to the spectra of real images and thus spectral

information is lost during the projection.

To ensure the stability of the retrieval, a range of values for a regularization parameter is

tested to learn the functional, and to inverse the three images. The optimal value is chosen

to minimize the variance between the mean values of the reconstructed physical parameters.

As an illustrative example, Fig. 6 focuses on the retrieval of the proportion of water

by three different methods. It presents maps derived from observation 41 and their asso-

ciated histograms. Note that inversion with GSVM was not performed, because the time

processing was too important to be used in practical situation. Linear methods were not
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Figure 6. Proportion of water estimated by (a) k-NNpca, (b) GRSIR, and (c) K-GRSIR from

the hyperspectral image observed from orbit 41. Dark blue corresponds to pixels which are

not considered for the inversion. The inverted image and the corresponding histogram are

displayed for each method.

investigated after since they have performed poorly on the simulated data sets. Figure 7

presents results for the remaining parameters obtained with K-GRSIR.

A major drawback of the k-NN method against GRSIR and K-GRSIR can be seen on the

histogram: It provides discrete estimation. Thus, the inversion map is non smooth and only

values from the training set can be returned. GRSIR and, in particular K-GRSIR provides

a smooth map. Some saturation exists for K-GRSIR on the left part of the histogram.

The same saturation exists for third parameter, see Fig. 7(b), which is consistent with the

constraint linking the first three parameters (the sum of compound abundances must equal

one).

5. Conclusion

The physical analysis by massive inversion of hyperspectral images has been considered in

this paper. Supervised parametric and non-parametric methods were investigated and com-

pared to one commonly used method in astrophysics, k-NN. A method using both paramet-

ric and non-parametric algorithms has been proposed, namely K-GRSIR. On a simulated

data set, this method performs slightly worse in terms of NRMSE than GSVM, but with the

gain of a much reduced training time making it an accurate and tractable method in prac-

tical situations. On real images, GSVM is hard to train because of its computational load.

K-GRSIR provides the most interpretable maps.

Considering Fig. 5, the regression curve seems to be polynomial, thus motivating the

use of a polynomial kernel in K-GRSIR or in SVM. On simulated data, no difference
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Figure 7. Orbit 41: (a) Proportion of CO2, (b) Proportion of dust, (c) Grain size of H2O and

(d) Grain size of CO2. The inversion is done with K-GRSIR. Dark blue corresponding to

pixels which are not considered for the inversion. The inverted image and the corresponding

histogram are displayed for each parameter.
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in terms of NRMSE was found, but the training time is higher due to numerical prob-

lems [Bernard-Michel et al., 2009a]. The definition of a new kernel that would handle more

efficiently the physical model is under investigation.

Current research concern the difference in terms of statistics between the simulated data

and the real images. In particular, we are working on a semi-supervised framework to match

statistics from simulated data and real data before the estimation of the regression function.

The use of multivariate versions of SIR [Coudret et al., 2014] able to deal with mul-

tidimensional response variable y would allow us to implement some constraints on

the physical parameters (for instance, compound abundances must sum to one). This

should improve the results obtained on real data sets. Also, the use of versions of

SIR [Chiancone et al., 2016] robust with respect to outliers could be investigated.
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