Product Rules and Distributive Laws

Abstract : We give a categorical perspective on various product rules, including Brzozowski’s product rule $(st)_a = s_a t + o(s) t_a$ and the familiar rule of calculus $(st)_a = s_a t + s t_a$ It is already known that these product rules can be represented using distributive laws, e.g. via a suitable quotient of a GSOS law. In this paper, we cast these product rules into a general setting where we have two monads S andT, a (possibly copointed) behavioural functor F, a distributive law of T over S, a distributive law of S over F, and a suitably defined distributive law $TF \Rightarrow FST$ We introduce a coherence axiom giving a sufficient and necessary condition for such triples of distributive laws to yield a new distributive law of the composite monad ST over F, allowing us to determinize FST-coalgebras into lifted F coalgebras via a two step process whenever this axiom holds.
Type de document :
Communication dans un congrès
Ichiro Hasuo. 13th International Workshop on Coalgebraic Methods in Computer Science (CMCS), Apr 2016, Eindhoven, Netherlands. Lecture Notes in Computer Science, LNCS-9608, pp.114-135, 2016, Coalgebraic Methods in Computer Science. 〈10.1007/978-3-319-40370-0_8〉
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01446036
Contributeur : Hal Ifip <>
Soumis le : mercredi 25 janvier 2017 - 15:24:39
Dernière modification le : jeudi 26 janvier 2017 - 09:07:18
Document(s) archivé(s) le : mercredi 26 avril 2017 - 15:51:13

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Joost Winter. Product Rules and Distributive Laws. Ichiro Hasuo. 13th International Workshop on Coalgebraic Methods in Computer Science (CMCS), Apr 2016, Eindhoven, Netherlands. Lecture Notes in Computer Science, LNCS-9608, pp.114-135, 2016, Coalgebraic Methods in Computer Science. 〈10.1007/978-3-319-40370-0_8〉. 〈hal-01446036〉

Partager

Métriques

Consultations de la notice

40