Infinite Subgame Perfect Equilibrium in the Hausdorff Difference Hierarchy

Abstract : Subgame perfect equilibria are specific Nash equilibria in perfect information games in extensive form. They are important because they relate to the rationality of the players. They always exist in infinite games with continuous real-valued payoffs, but may fail to exist even in simple games with slightly discontinuous payoffs. This article considers only games whose outcome functions are measurable in the Hausdorff difference hierarchy of the open sets (i.e. ${ {\Delta }}^0_2$ when in the Baire space), and it characterizes the families of linear preferences such that every game using these preferences has a subgame perfect equilibrium: the preferences without infinite ascending chains (of course), and such that for all players a and b and outcomes x, y, z we have $\lnot (z <_a y <_a x \,\wedge \, x <_b z <_b y)$. Moreover at each node of the game, the equilibrium constructed for the proof is Pareto-optimal among all the outcomes occurring in the subgame. Additional results for non-linear preferences are presented.
Type de document :
Communication dans un congrès
Mohammed Taghi Hajiaghayi; Mohammad Reza Mousavi. 1st International Conference on Theoretical Computer Science (TTCS), Aug 2015, Tehran, Iran. Lecture Notes in Computer Science, LNCS-9541, pp.147-163, 2016, Topics in Theoretical Computer Science. 〈10.1007/978-3-319-28678-5_11〉
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01446258
Contributeur : Hal Ifip <>
Soumis le : mercredi 25 janvier 2017 - 16:50:41
Dernière modification le : jeudi 26 janvier 2017 - 10:24:39
Document(s) archivé(s) le : mercredi 26 avril 2017 - 18:34:54

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Stéphane Le Roux. Infinite Subgame Perfect Equilibrium in the Hausdorff Difference Hierarchy. Mohammed Taghi Hajiaghayi; Mohammad Reza Mousavi. 1st International Conference on Theoretical Computer Science (TTCS), Aug 2015, Tehran, Iran. Lecture Notes in Computer Science, LNCS-9541, pp.147-163, 2016, Topics in Theoretical Computer Science. 〈10.1007/978-3-319-28678-5_11〉. 〈hal-01446258〉

Partager

Métriques

Consultations de la notice

34