S. Abramsky and V. Winschel, Coalgebraic analysis of subgame-perfect equilibria in infinite games without discounting, Mathematical Structures in Computer Science, vol.62, 2012.
DOI : 10.1016/S0304-3975(00)00056-6

T. Brihaye, V. Bruyère, J. D. Pril, and H. Gimbert, Subgame Perfection for Equilibria in Quantitative Reachability Games, Logical Methods in Computer Science, vol.9, 2012.
DOI : 10.1007/978-3-642-28729-9_19

URL : https://hal.archives-ouvertes.fr/hal-01006403

T. Brihaye, V. Bruyère, N. Meunier, and J. Raskin, Weak subgame perfect equilibria and their application to quantitative reachability, 2015.
DOI : 10.1007/978-3-642-28729-9_19

J. , R. Büchi, and L. H. Landweber, Solving sequential conditions by finite-state strategies. Transactions of the, pp.295-311, 1969.

M. Escardó and P. Oliva, Selection functions, bar recursion and backward induction, Mathematical Structures in Computer Science, vol.23, issue.02, pp.127-168
DOI : 10.1016/0890-5401(91)90052-4

J. Flesch, J. Kuipers, A. Mashiah-yaakovi, G. Schoenmakers, E. Solan et al., Perfect-Information Games with Lower-Semicontinuous Payoffs, Mathematics of Operations Research, vol.35, issue.4, p.742755, 2010.
DOI : 10.1287/moor.1100.0469

J. Flesch, J. Kuipers, A. Mashiah-yaakovi, G. Schoenmakers, E. Shmaya et al., Non-existence of subgame-perfect $$\varepsilon $$ ?? -equilibrium in perfect information games with infinite horizon, International Journal of Game Theory, vol.39, issue.4, pp.945-951, 2014.
DOI : 10.1007/s00182-014-0412-3

D. Fudenberg and D. Levine, Subgame-perfect equilibria of finite- and infinite-horizon games, Journal of Economic Theory, vol.31, issue.2, pp.251-268, 1983.
DOI : 10.1016/0022-0531(83)90076-5

D. Gale and F. M. Stewart, 13. Infinite Games with Perfect Information, Annals of Math. Studies, vol.28, pp.245-266, 1953.
DOI : 10.1515/9781400881970-014

URL : https://hal.archives-ouvertes.fr/in2p3-00013000

H. Gimbert and W. Law-zielonka, Games Where You Can Play Optimally Without Any Memory, CONCUR 2005 -Concurrency Theory, pp.428-442, 2005.
DOI : 10.1007/11539452_33

URL : https://hal.archives-ouvertes.fr/hal-00160435

A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, vol.156, 1995.
DOI : 10.1007/978-1-4612-4190-4

W. Harold and . Kuhn, Extensive games and the problem of information, Contributions to the Theory of Games II, 1953.

R. Stéphane-le, Acyclic preferences and existence of sequential Nash equilibria: a formal and constructive equivalence, TPHOLs, International Conference on Theorem Proving in Higher Order Logics, pp.293-309, 2009.

R. Stéphane-le, Infinite sequential Nash equilibrium Special Issue for the Conference, Logical Methods in Computer Science Computability and Complexity in Analysis, vol.9, 2013.

R. Stéphane-le, From winning strategy to Nash equilibrium, Mathematical Logic Quarterly, 2014.

S. Le, R. , and A. Pauly, Infinite sequential games with real-valued payoffs, Proceedings of LiCS, 2014.

S. Le, R. , and A. Pauly, Weihrauch degrees of finding equilibria in sequential games, Proceedings of CiE 2015, p.2015

P. Lescanne and M. Perrinel, ???Backward??? coinduction, Nash equilibrium and the rationality of escalation, Acta Informatica, vol.97, issue.1, pp.117-137, 2012.
DOI : 10.1007/s00236-012-0153-3

A. Donald and . Martin, Borel determinacy, Annals of Mathematics, vol.102, pp.363-371, 1975.

A. Donald and . Martin, An extension of Borel determinacy, Annals of Pure and Applied Logic, vol.49, pp.279-293, 1990.

J. Mertens, Repeated games, Proceedings of the international congress of mathematicians, pp.1528-1577, 1987.

R. Purves and W. Sudderth, Perfect Information Games with Upper Semicontinuous Payoffs, Mathematics of Operations Research, vol.36, issue.3, p.468473, 2011.
DOI : 10.1287/moor.1110.0504

R. Selten, Spieltheoretische Behandlung eines Oligopolmodells mit Nachfrageträgheit . Zeitschrift für die desamte Staatswissenschaft, 1965.

J. , M. Smith, and G. R. Price, The logic of animal conflicts, Nature, vol.246, pp.15-18, 1973.

E. Solan and N. Vieille, Deterministic multi-player Dynkin games, Journal of Mathematical Economics, vol.39, issue.8, pp.911-929, 2003.
DOI : 10.1016/S0304-4068(03)00021-1

URL : https://hal.archives-ouvertes.fr/hal-00591681

M. Ummels, Rational Behaviour and Strategy Construction in Infinite Multiplayer Games, FSTTCS 2006: Foundations of Software Technology and Theoretical Computer Science, pp.212-223, 2006.
DOI : 10.1007/11944836_21

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

P. Wolfe, The strict determinateness of certain infinite game, Pacific Journal of Mathematics, vol.5, issue.5, pp.841-847, 1955.
DOI : 10.2140/pjm.1955.5.841