
HAL Id: hal-01446633
https://inria.hal.science/hal-01446633

Submitted on 26 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Efficient Architecture-Level Configuration of Large-Scale
Embedded Software Systems

Razieh Behjati, Shiva Nejati

To cite this version:
Razieh Behjati, Shiva Nejati. Efficient Architecture-Level Configuration of Large-Scale Embedded
Software Systems. 6th Fundamentals of Software Engineering (FSEN), Apr 2015, Tehran, Iran.
pp.110-126, �10.1007/978-3-319-24644-4_8�. �hal-01446633�

https://inria.hal.science/hal-01446633
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Efficient Architecture-Level Configuration of
Large-Scale Embedded Software Systems

Razieh Behjati1 and Shiva Nejati2
1Certus Software V&V Center, Simula Research Laboratory, Norway

2SnT Centre, University of Luxembourg, Luxembourg
behjati@simula.no, shiva.nejati@uni.lu

Abstract. Configuration is a recurring problem in many domains. In
our earlier work, we focused on architecture-level configuration of large-
scale embedded software systems and proposed a methodology that en-
ables engineers to configure products by instantiating a given reference
architecture model. Products have to satisfy a number of constraints
specified in the reference architecture model. If not, the engineers have
to backtrack their configuration decisions to rebuild a configured product
that satisfies the constraints. Backtracking configuration decisions makes
the configuration process considerably slow. In this paper, we improve
our earlier work and propose a backtrack-free configuration mechanism.
Specifically, given a cycle-free generic reference architecture model, we
propose an algorithm that computes an ordering over configuration pa-
rameters that yields a consistent configuration without any need to back-
track. We evaluated our approach on a simplified model of an industrial
case study. We show that our ordering approach eliminates backtracking.
It reduces the overall configuration time by both reducing the required
number of value assignments, and reducing the time that it takes to com-
plete one configuration iteration. Furthermore, we show that the latter
has a linear growth with the size of the configuration problem.
Keywords: Model-based configuration, CSP, Backtracking, UML/OCL.

1 Introduction

Configuration is a recurring problem in many embedded software system do-
mains such as energy, automotive, and avionics. In these domains, product-line
engineering approaches [27, 22] are largely applied to develop various configu-
rations of a reference architecture. Briefly, a reference architecture provides a
common, high-level, and customizable structure for all members of the product
family [27] by specifying different types of components and configurable param-
eters, as well as, constraints capturing relationships between these parameters.
Through configuration, engineers develop each product by creating component
instances and assigning values to their parameters such that the constraints over
parameters are satisfied.

Normally, configuring embedded systems involves assigning values to tens of
thousands of interdependent parameters, and ensuring their consistency. Typ-
ically, 15 to 20 percent of these parameters are interdependent. Finding con-
sistent values for interdependent parameters without any automated support is

challenging. Manual configuration – the common practice in many companies –
is time-consuming and error-prone, especially for large-scale systems. During the
last three decades, researchers have developed a large number of approaches to
automate various configuration use cases [6]. Most of these approaches concern
consistency of configuration decisions, and rely on constraint solvers (e.g., [13,
23, 19]) or SAT solvers (e.g., [20]) for ensuring consistency.

In our earlier work [4], we proposed an iterative approach for configuring
large embedded systems where at each iteration the value for one parameter is
specified. If at some point during configuration, a value assignment violates some
constraints, then the engineers may have to backtrack some of their recent choices
until they can find a configuration assignment consistent with the constraints
in the reference architecture. Backtracking configuration decisions makes the
configuration process considerably expensive.

In this paper, we extend our earlier work [4] and propose a new approach
that eliminates backtracking during configuration by configuring parameters in
a certain order. We explain how such an ordering is extracted from an acyclic1
reference architecture model, and argue that if the ordering is followed, our algo-
rithm generates consistent and complete configured products without any need
to backtrack a decision. We argue that elimination of backtracking considerably
improves the performance of our configuration approach. We show this by ap-
plying our approach to a simplified excerpt of an industrial case study from the
oil and gas domain. The experiment shows that our ordering approach reduces
the overall configuration time by both reducing the required number of value
assignments, and reducing the time that it takes to complete one configura-
tion iteration. Further, we demonstrate that in our backtrack-free configuration
approach the time required for completing one configuration iteration grows lin-
early with the size of the configuration problem. In our original configuration
approach, this time has a quadratic growth.

In the rest of the paper, we first present the related work and position our
work in the literature. Section 3 provides an overview of the main concepts in
product family modeling and configuration. Our ordering approach for eliminat-
ing backtracking, and the resulting backtrack-free configuration algorithm are
presented in Section 4. In Section 5, we experimentally evaluate the efficiency
and scalability of our approach. A discussion of the potentials and limitations of
the work is presented in Section 6. Finally, we conclude the work in Section 7.

2 Related Work

Existing configuration approaches fall into two general categories, non-interactive
and interactive. Most configuration approaches belong to the first category,
1 In our approach, a reference architecture model consists of a component hierarchy,
and a set of constraints (see Section 3.1). Such a reference architecture is acyclic if it
neither contains any cycles in the component hierarchy nor in the constraints. This
condition is required to ensure the termination of the configuration process as well
as the complete elimination of backtracking (see Sections 4 and 6).

2

where the objective is to produce some final configured products without re-
quiring intermediate input from users. They may either find an optimized so-
lution based on some given optimization criteria (e.g., [13, 19]) or find all con-
figuration solutions (e.g., [7, 11, 23]). The non-interactive approaches may either
rely on meta-heuristic search approaches [14, 16, 21], or on systematic search
techniques used in constraint solvers [9, 10, 18], or on symbolic decision proce-
dures [8]. Among these, meta-heuristic search approaches are generally faster
and require less memory. However, since meta-heuristic search is stochastic and
incomplete, it cannot support an interactive process where engineers have to be
provided with precise and complete guidance information at each iteration.

Interactive configuration methods (e.g., [17, 20, 30, 31]) mostly rely on con-
straint solvers or symbolic reasoning approaches. Backtracking is required when-
ever an inconsistency arises, even though it may make the process considerably
slower. In general, constraint solvers alleviate the drawbacks of backtracking
by employing heuristics such as back-jumping [12], identifying no-goods con-
straints [1, 2], and ordering the search [15]. None of these improvements, how-
ever, totally eliminates the possibility of backtracking. In addition, it is open
whether these heuristics can be tailored to interactive configuration solutions.

Some more recent interactive configuration approaches [17, 30] have elimi-
nated backtracking by adding an offline preprocessing phase to configuration,
during which all consistent configurations are computed and used to direct the
user during the interactive phase, preventing the user to make any decision that
gives rise to an inconsistency. These approaches only scale when the space of
all consistent configurations can be encoded and computed within the available
memory. In the case of large-scale embedded software systems, the complexity
of constraints and the size of the configuration space is so large2, making it
impossible to compute the set of all possible configurations in an offline mode.

In our work, using information provided in reference architecture model, we
identify an ordering over variables and show that by following this ordering,
backtracking does not arise during the configuration of a single product. Our
approach applies to architecture-level configuration of embedded software sys-
tems with architectural dependencies and constraints specified in First-Order
Logic (FOL) [29]. Computation of ordering in our work is fast and performed
based on static analysis of architectural models and the constraints syntax.

3 Preliminaries

The work presented in this paper is based on a model-based configuration frame-
work presented in [4]. In this section, we present the reference architecture model,
and exemplify the main concepts in modeling and configuration of embedded
software systems. In addition, we propose the notion of a configuration tree.

2 Creating a product usually involves configuring tens of thousands of parameters.
The configuration space, which is in fact the combinatorial space created for these
parameters is, as well, significantly large.

3

3.1 The reference architecture model

In our approach, a reference architecture model defines a hierarchy of component
types. Each component has a number of configurable parameters, and may as
well contain other configurable elements. We consider configurable parameters as
one type of configurable elements. Furthermore, the reference architecture model
specifies constraints among the configurable parameters. The SimPL methodol-
ogy [5] is an approach for creating such reference architecture models. As men-
tioned earlier, during configuration, products are created by creating component
instances and configuring their parameters. In the following, we explain compo-
nents as the main building blocks of products, and constraints as they play a
key role is ensuring the consistency of products. A complete specification of the
reference architecture model and its formal semantics is given in [4].

3.1.1 Components
Each component in a product is an instance of a component type in the cor-
responding reference architecture. We define a component c as a tuple (id,V),
where id is a unique identifier, and V is a set of configurable elements. Each
configurable element in V is a tuple e = (ide, te), where ide is the name of the
element, and te is the type of the element. Figure 1 gives a grammar for the
types of elements in V.

type ::= single_type | arrayed_type ;
single_type ::= primitive_type | user_defined_type |

referenced_type ;
referenced_type ::= ‘&’ user_defined_type ;
arrayed_type ::= single_type ‘[]’ ;

Fig. 1. A simplified grammar for types.

In Figure 1, primitive_type represents a set of terminals for primitive types
‘integer’ and ‘boolean’ (we do not consider ‘strings’), and user_defined_type
denotes a set of terminals each corresponding to a component type defined in
the reference architecture model.

Configurable elements of a primitive type or a referenced type represent con-
figurable parameters. A configurable element of a user defined type represents a
sub-component of c (i.e., the sub-component is a component c′ = (id′,V ′) itself).

3.1.2 Constraints
Let c = (id,V) be a component. We use Φid to denote the set of constraints
defined in the context of c (i.e., specifying relations among elements of c). Each
member of the set Φid is a boolean expression denoting a constraint φ. A sim-
plified grammar for the language of boolean expressions is given in Figure 2.
This grammar maps to a subset of the Object Constraint Language (OCL) [26]
that we use in the SimPL methodology. The grammar allows the basic OCL

4

operators including for-all, exists, arithmetic, relational and logical operators.
In Figure 2, FA represents the universal quantifier, which maps to OCL forAll
operator. Similarly, EX represents the existential quantifier, which maps to OCL
exists operator.

bool_expr ::= bool_term (OR bool_term)*;
bool_term ::= bool_factor (AND bool_factor)*;
bool_factor ::= bool_literal | bool_qName | var |

‘(’ bool_expr ‘)’ | rel_expr | NOT bool_factor |
FA ‘(’ var ‘in’ array_qName ‘,’ bool_expr ‘)’ |
EX ‘(’ var ‘in’ array_qName ‘,’ bool_expr ‘)’ ;

rel_expr ::= num_expr (GT | LT | GEQ | LEQ | EQ | NEQ) num_expr ;
num_expr ::= num_term ((PLUS | MINUS) num_term)*;
num_term ::= num_factor ((MUL | DIV) num_factor)*;
num_factor ::= num_literal | int_qName | var |

‘(’ num_expr ‘)’ | NEG num_factor ;

Fig. 2. A simplified grammar of boolean formulas.

Three types of qualified names (i.e., bool_qName, int_qName, and array_q-
Name) are used in the production rules of the grammar given in Figure 2. Quali-
fied names together with literals and operators create numerical, relational, and
boolean expressions. Qualified names of numerical types (i.e., integer or a user
defined enumeration) form one type of numerical factors and are used in creating
relational expressions. Qualified names of type boolean form one type of boolean
factors. Qualified names representing collections of items can be combined with
set quantifiers (i.e., for all and exists) to form another group of boolean fac-
tors. In addition to these, variables (i.e., var) may be used as integer or boolean
factors. Variables are used in combination with quantifiers.

3.1.3 A configuration example
Figure 3 is a class diagram showing an excerpt of a simplified reference architec-
ture for a family of subsea oil production systems. It is part of a larger case study,
which is presented in [5, 4]. Each class in Figure 3 represents a component type,
and each attribute in a class represents a configurable parameter. In addition,
two OCL constraints are defined in the context of class ElectronicConnections.

To make a product, one has to create and configure an instance of a XmasTree.
To do so, engineers have to specify the number of electronic boards on each of
the Subsea Electronic Modules3 (SEMs) by initializing the eBoards array in each
of the two SEMs (each XmasTree instance has two SEM instances) and assign
a value to each item in those arrays, create a number of electronic connections
by setting the size of array myConnections, and assigning values to relatedSEM,
pinIndex and bIndex attributes of each ElectronicConnection instance.
3 A Subsea Electronic Module is an electronic unit, with software deployed on it. It is
the main component in a subsea control system.

5

XmasTree

ElectronicConnection

int bIndex
int pinIndex

myConnections *

1
relatedSEM

Device *
devices

SEM

int[] eBoards

2 mySEMs

context ElectronicConnection
bIndex <= relatedSEM.eBoards->size()
pinIndex <= relatedSEM.eBoards[bIndex]

Fig. 3. An excerpt of the reference architecture model of a subsea oil production
system.

Example 1. Suppose that, at some point in the configuration of a product, a user
configures an ElectronicConnection by first setting its bIndex to 5, then setting its
pinIndex to 20, and finally setting its relatedSEM to one of the SEM instances. At
this point, if the chosen SEM instance has less than 5 electronic boards, or its
eBoards[5] is less than 20, an inconsistency happens. In this case, the user has to
backtrack to fix the inconsistency, for example by changing the value of pinIndex
or bIndex. Alternatively, to eliminate backtracking, the user can first configure
relatedSEM, then assign a value to bIndex, and finally configure pinIndex. �

In this paper, based on a static analysis of the constraints, we propose an ap-
proach for identifying configuration orderings that eliminate backtracking.

3.2 The configuration tree

A product is usually represented by a configuration tree. We denote a configura-
tion tree by a tuple (N,E), where N is the set of nodes, and E is the set of edges
of the tree. In our approach, each node in a configuration tree has a type and
a value, and each edge has a label. The type of a node belongs to the language
of types in Figure 1. Based on this, we identify four types of nodes: primitive
nodes, component nodes (if the node is typed by a user defined type), reference
nodes, and array nodes. Figure 4 shows two example configuration trees.

Primitive nodes and reference nodes represent configurable parameters, and
are always leaf nodes in the tree. The value of a leaf node must conform to its
type. A missing value for a leaf node means that the corresponding configurable
parameter is not yet configured. Nodesm13 andm15 in Figure 4-(b) are primitive
and reference nodes, respectively. Both nodes are unconfigured.

Each array node has a child node of type ‘int’, which is connected to it by
an edge labeled ‘size()’. We refer to this node as the array’s size node. An array
node is called uninitialized if its size node does not have a value, and is called
initialized otherwise. An initialized array node of size n, and type ‘single_type[]’
has n additional child nodes. Each of these child nodes is typed by ‘single_type’,
and is connected to the array node via an edge labeled ‘at(i)’, where i is an integer
in [1..n]. Node m2 in Figure 4-(a) is an initialized array node of size two.

A component node represents a component. Such a node is typed by a user
defined type, and its value is the identifier of the corresponding component. Let

6

(xt1)

(sem2)

int[]
(-)

int
()

eBoards

size()

ElectronicCo
nnection[] (-)

myConnections

int
()

size()

(ec1)

int
()

bIndex

int
()

pinIndex

&
SEM()

relatedSEM

(b)(a)

m12

m13 m14 m15

m9

m1

m7

m10

m8

m11

(sem1)

int[]
(-)

int
()

eBoards

size()

m6

m4

m5

SEM[]
(-)

at(1) at(2)

m2

mySEMs

int
(2)

size()

m3

Fig. 4. Configuration subtrees representing two components. Text inside a circle
represents the type and value (in parenthesis) of the node. The text next to a
node is a unique name to refer to the node in our explanation of the approach.
(a) an instance of XmasTree, and (b) an instance of ElectronicConnection.

m be the component node representing the component c = (id,V). For each
(ide, te) ∈ V, there is a child node for m typed by te and connected to m via an
edge labeled ide. Node m1 in Figure 4-(a) is a component node of type XmasTree,
representing a component with identifier xt1. To avoid cluttering, we have not
shown the type of the component (i.e., XmasTree) in the text inside node m1.
The subtree beneath m1 shows the configurable elements of xt1. None of these
elements are configured in Figure 4-(a). One possible partial configuration is
given in Figure 5.

(xt1)

(sem2)

int[]
(-)

int
(2)

eBoards

size()

ElectronicCo
nnection[] (-)

myConnections

int
(2)

size()

m9

m1

m7

m10

m8
m11

(sem1)

int[]
(-)

int
()

eBoards

size()

m6

m4

m5

SEM[]
(-)

at(1) at(2)

m2

(ec1)

int
()

bIndex

int
()

pinIndex

(&
sem2)

relatedSEM

m12

m13 m14 m15

(ec2)

at(1) at(2)

m18

mySEMs

int
()

int
()

m16 m17

at(1) at(2)

int
(2)

size()

m3

int
(1)

bIndex

int
()

pinIndex
(&

sem2)

relatedSEM

m19 m20 m21

Fig. 5. One possible partial configuration of node m1 in Figure 4-(a).

4 The configuration process
Our model-based configuration approach presented in [4] validates configuration
decisions automatically and interactively. For this purpose, we use the config-

7

uration tree and the constraints defined in the reference architecture model to
create a constraint network [24]. A constraint network is a finite set of vari-
ables, each associated with a finite domain of discrete values, and a number of
constraints over those variables. The problem of finding a consistent configura-
tion maps to a constraint satisfaction problem, where the objective is to find a
consistent assignment of values to all the variables in the constraint network.
Each configurable parameter (a leaf node in the configuration tree) maps to a
variable in the constraint network. The domain of the variable corresponding
to configurable parameter p is a finite set of literals that can be assigned to p.
Each constraint in the reference architecture model is rewritten in terms of the
variables in the constraint network, and is added to the constraint network. Dur-
ing configuration, new variables or constraints may be added to the constraint
network. We call this the dynamic growth of the constraint network.

To ensure the consistency of configuration decisions, we use constraint prop-
agation over finite domains [28]. Constraint propagation provides a sound ap-
proximation of consistency: it does not eliminate any consistent solution, but it
may fail to identify all inconsistent value-assignments. In other words, constraint
propagation prunes the search space, but it does not enumerate all possible solu-
tions. The benefit of using constraint propagation is that it is fast, and therefore
applicable in an interactive context. Its drawback is that it does not eliminate
all inconsistent value-assignments, and therefore, backtracking may be needed
to ensure consistency. This can be avoided by imposing some restrictions on the
reference architecture model of the product family. In particular, the model of
the product family should not contain any cyclic constraints.

Another reason for requiring backtracking in our original configuration ap-
proach is the dynamic growth of the constraint network. New constraints that
are added to the constraint network may be inconsistent with some of the pre-
viously made decisions. To avoid this, we configure parameters in a particular
order. In the following, before presenting our approach for ordering configuration
decisions, we first present the notion of qualified names. Then, based on the pro-
posed ordering approach, we present a backtrack-free configuration algorithm.

4.1 Qualified names

Figure 6 shows a grammar for qualified names. A qualified name (e.g., int_qName)
represents a typed variable (e.g., a configurable parameter) and may repre-
sent an individual item (e.g., int_qName) or a collection of items (i.e., ar-
ray_qName). The last rule in Figure 6 is added to explicitly define int_qName
and bool_qName as primitive qualified names. Primitive qualified names repre-
sent configurable parameters, and together with array qualified names are used
in the grammar of boolean expressions in Figure 2.

A qualified name can be created by traversing a configuration tree. Let CT
be a configuration tree, and n be a node representing a component c = (id,V) in
the configuration tree. Each node n′ in the subtree rooted at n can be uniquely
identified by a string created using id and edge labels. To do so, we start with

8

string str = “id”, and follow the edges that bring us to n′. After traversing each
edge, we concatenate str with “.l”, where l is the label of the last traversed edge4.
Using this approach each node in the tree may be represented by more than one
string, depending on the starting node. A string should always start with the
label of a component node.

1 int_qName ::= element_qName ‘.’ int_prop_name |
2 array_qName ‘.’ ‘size()’ |
3 int_array_qName ‘[’ int_factor ‘]’;
4 int_factor ::= int_literal | int_qName;
5 int_array_qName ::= element_qName ‘.’ int_array_prop_name;
6 element_qName ::= component_id |
7 element_qName ‘.’ element_prop_name |
8 element_array_qName ‘[’ int_factor ‘]’;
9 element_array_qName ::= element_qName ‘.’ element_array_prop_name;
10 bool_qName ::= element_qName ‘.’ bool_prop_name |
11 bool_array_qName ‘[’ int_factor ‘]’;
12 bool_array_qName ::= element_qName ‘.’ bool_array_prop_name;
13 array_qName ::= int_array_qName | bool_array_qName |
14 element_array_qName;
15 primitive_qName ::= int_qName | bool_qName;

Fig. 6. The grammar of qualified names.

4.1.1 Semantically valid qualified names
Let CT be a configuration tree representing a possibly partially-configured prod-
uct derived from a given reference architecture. A subset of the qualified names
created using the grammar in Figure 6 are semantically valid with respect to the
configuration tree CT . We use Q(CT) to denote this subset. A qualified name q
belongs to Q(CT) iff one of the following holds:

– q is the label of a component node in CT ,
– q = q1.t, where q1 ∈ Q(CT), and q1 represents a component c = (id,V),

such that t is the name of an element in V,
– q = q1[q2], where q1 ∈ Q(CT), q1 represents an arrayed element, and q2 is

either an integer literal or a semantically valid qualified name representing
an integer parameter,

– q = q1.size(), where q1 ∈ Q(CT), and q1 is an arrayed element.

4.1.2 Mapped and unmapped qualified names
Let CT be a configuration tree, and q be a semantically valid qualified name
in Q(CT). If q corresponds to a node in CT , then we call q a mapped qualified
name, otherwise, it is called an unmapped qualified name. A qualified name q is
unmapped if any of the following conditions holds:

4 In the rest of this paper, for the sake of conciseness, we use a[i] to denote a.at(i),
where a represents an array node in the configuration tree, and i is an integer literal.

9

– a prefix of q maps to an unconfigured reference node,
– q is of the form q1[q2], where q2 represents an unconfigured parameter,
– q is of the form q1[q2], where q1 is an uninitialized array (q1.size() is not

configured).

In each case, a parameter is unconfigured. For a semantically valid unmapped
qualified name q, we use U(q) to denote the set of all such unconfigured param-
eters. For a qualified name q mapped to a leaf node, we use M(q) to denote the
corresponding configurable parameter.

Let CT be the configuration tree in Figure 5. Then xt1.mySEMs[1] is mapped,
and sem1.eBoards[1] is an unmapped semantically valid qualified name inQ(CT).
An unmapped qualified name can become mapped as parameters are configured
and the tree is expanded. For example, sem1.eBoards[1] becomes mapped after
configuring the size of sem1.eBoards.

4.2 Ordering configuration decisions

Example 1 in Section 3.1.3 shows an example of inconsistencies that arise due
to the dynamic growth. In this example, the two constraints in Figure 3 cannot
be evaluated until relatedSEM is configured. This is because relatedSEM.eBoards,
appeared in both constraints, is unmapped as it does not correspond to a unique
node in the tree. By configuring relatedSEM both constraints become ready-to-
evaluate, can be added to the constraint network, and can be used in constraint
propagation to validate the values assigned to pinIndex and bIndex or to eliminate
inconsistent values for them if they were not configured. We call a constraint that
is not yet ready-to-evaluate, a pending constraint. Such a constraint contains one
or more unmapped qualified names and is pending on one or more parameters
to be configured. These parameters should be configured to make the unmapped
qualified names mapped. For example, the constraints in Example 1 are pending
on relatedSEM to be configured. In each configuration iteration, each constraint
is either pending or ready-to-evaluate. Figure 7 shows the state transition di-
agram of a constraint. As a consequence of configuring parameters, a pending
constraint may become ready-to-evaluate. Only ready-to-evaluate constraints
can be included in the constraint network.

Consider the ith step of configuration and let c be a pending binary con-
straint, containing two qualified names q1 and q2. Suppose that q1 is unmapped,
and q2 is mapped to the configurable parameter p (i.e.,M(q2) = p). This parame-
ter cannot be configured until c becomes ready-to-evaluate (i.e., until q1 becomes
a mapped qualified name). We refer to such a parameter as a pending parameter.
Let parameters p1, ..., pn be the parameters that should be configured to make q1
a mapped qualified name (i.e., U(q1) = {p1, ..., pn}). To eliminate backtracking,
parameter p should be configured after all pis are configured. This is shown in
Figure 8. Before a parameter reaches the state ready, the set X, which is the set
of all pis as described above, should be empty. As shown in Figure 8, a parameter
can be configured only when it is in state ready. Note that, as suggested by the
formulation of X, in general p may be involved in more than one constraint.

10

initstart pending ready
U(q1) 6= ∅ ∨ U(q2) 6= ∅

U(q1) = U(q2) = ∅

U(q1) = U(q2) = ∅

Fig. 7. States of constraint c = φ(q1, q2).

initstart pending ready configured
X 6= ∅

X = ∅
X = ∅

Config. of p

Fig. 8. States of parameter p. X is {p′|∃c = φ(q1, q2).p
′ ∈ U(q1) ∧M(q2) = p}.

In other words, in each configuration iteration, the set of all unconfigured pa-
rameters is partitioned into two sets: pending and ready-to-configure parameters.
This partitioning of parameters, together with the stepwise configuration, which
in each iteration may add new unconfigured parameters to the system, imposes
an ordering on the configuration decisions. Note that, in each iteration, there
is no ordering among the ready-to-configure parameters. The acyclic property
of the reference architecture model guarantees that every parameter eventually
reaches the state ready.

4.3 Backtrack-free configuration

Algorithm 1 is our backtrack free configuration algorithm, which implements
the ordering approach explained above. Input to the algorithm is a cycle-free
reference architecture, which contains a class diagram and a set of constraints.
The output is a configuration tree CT . We maintain three sets of parameters:
configured (C), ready-to-configure (R), and pending parameters (P); and two
sets of constraints: ready-to-evaluate (Φ), and pending (Φ′) constraints. Using
the input reference architecture model, we initialize all these sets and the con-
figuration tree in line 1 of the algorithm.

Algorithm 1. BTFreeConfig
Input: A reference architecture RA
Output: a configuration tree CT

1 (CT,C,R, P, Φ, Φ′)← initializeConfigurationProblem(RA)
2 D ← computeValidDomains(C,R, Φ)
3 while R 6= ∅ do
4 read(i) B i: index of the selected unconfigured parameter
5 read(v) B value to be assigned to the selected parameter
6 B v must be in D[i] (the domain of the selected parameter)
7 while not v ∈ D[i] do
8 read(v)
9 applyConfiguration(CT,C,R, P, Φ, Φ′, i, tmp)

10 D ← updateValidDomains(C,R, Φ)
11 if some domains in D are empty then
12 throwException()
13 return CT

11

In line 2, domains of the unconfigured parameters are computed using the
routine computeValidDomains. In this routine, we use a constraint solver
to prune the domains by removing values that are inconsistent with one or
more constraints in Φ or some values in C. Note that only the ready-to-evaluate
constraints and their variables are considered when pruning the domains (i.e.,
P and Q are not included in the computation).

The while loop in lines 3-12 repeats while there are some ready-to-configure
parameters (i.e., R 6= ∅). In each iteration, one parameter is configured. Both the
parameter and its value are selected by the human user in lines 4 and 5 of the
algorithm. Lines 7 and 8 guarantee that the selected value is within the domain
of the selected parameter and is, therefore, consistent. As a result of assigning a
value v to a parameter R[i], one or more of the following may happen:

– new nodes may be added to the configuration tree, therefore new elements
may be added to R and P

– if a constraint is pending on R[i], it may become ready-to-evaluate, and
– some of the parameters that are pending on R[i] may become ready for

configuration. We move them to the set of ready-to-configure parameters R.

These actions are performed in line 9 by calling the routine applyConfig-
uration. The constraint solver is again invoked in line 10 to update the valid
domains. If some domains become empty, the algorithm throws an exception in
line 12. Otherwise, it continues to the next iteration. Eventually, a completely
and consistently configured configuration tree is returned in line 13.

In [4], we showed that our original configuration algorithm produces com-
plete and consistent products. A product is complete if it does not contain any
unconfigured parameters, and is consistent if it satisfies all the constraints in
the reference architecture model. In our technical report [3], we have shown that
Algorithm 1 produces complete and consistent products, but without requiring
backtracking. In other words, for any given acyclic reference architecture model,
Algorithm 1 terminates without ever reaching line 12.

5 Evaluation

To evaluate the efficiency brought by our ordering approach, we performed an
experiment using the reference architecture model presented in Figure 3. For
this purpose, 1600 random configuration scenarios were created (800 scenarios
for each of our original and backtrack-free configuration approaches). In each
case, we started by configuring three parameters that identify the size of the
configuration problem, then randomly configured the rest of the parameters.
The first three parameters were configured as listed in Table 1. This is done
merely to control the number of parameters in each case to simplify the analysis
of the results. For each case in Table 1, we randomly generated 100 sample con-
figuration scenarios using our original configuration approach, and 100 sample
configuration scenarios using the backtrack-free configuration approach. Figure 9
shows the average response time in each iteration for both cases.

12

Parameters
Elec. # eBoards

Connections on SEMs

25 5 3,4
50 14 2,3
75 21 4,5
100 27 6,10
125 32 12,14
150 35 17,25
175 49 11,14
200 49 25,25

Table 1. Configuration settings.

50 100 150 200

5
10

15
20

25
30

35

Number of parameters

A
vg

. r
es

po
ns

e
tim

e
(m

s)

Original (without ordering)
Backtrack−free (with ordering)

Fig. 9. A comparison of the average
response time for our original and
backtrack-free configuration approaches.

In our original configuration approach, a complete configuration iteration, in
addition to validating the decision and propagating it, may involve several deci-
sion roll-backs, and is therefore time consuming. On the other hand, a complete
configuration iteration in the backtrack-free configuration approach involves val-
idating and propagating the decision, and updating the ordering (i.e., updating
lists of pending constraints and parameters). By using the ordering, we eliminate
all the roll-backs and their costs. This explains why for most cases in Figure 9, an
average iteration in the original configuration approach takes much longer than
that in the backtrack-free configuration approach. This experiment shows that
for configuration scenarios with more than 50 parameters, the time overhead of
computing the ordering is negligible compared to the time that should otherwise
be spent on rolling-back the decisions.

In our original configuration approach, for fixing an inconsistency, in addi-
tion to rolling back some of the decisions, new values must be assigned to the
parameters that might have caused that inconsistency. In our experiment, on
average 23.6 different values were tried per parameter to achieve a consistent
configuration. This high number is a result of our current naive implementation
of backtracking. By exploiting heuristics such as back jumping [12], this number
can be reduced significantly. Table 2 shows the number of decisions that were
needed to achieve a consistent configuration.

Parameters 25 50 75 100 125 150 175 200
Avg. # Decisions 174.85 949.60 1773.49 2678.15 3426.29 2112.34 6301.47 3842.10
Avg. Ratio 6.99 18.99 23.65 26.78 27.41 14.08 36.00 19.21
Total Avg. Ratio (average number of decisions per parameter) 23.62

Table 2. Overhead of backtracking.

13

To provide a better insight into the time complexity of our configuration
approaches, we performed another experiment. The result of this experiment is
shown in Figures 10 and 11. In each case, we measured the average response
time for randomly generated configuration scenarios. Figure 10 shows that for
our original approach the response time (i.e., the time that it takes to complete
one configuration iteration) grows quadratically with the size of the configuration
problem (i.e., the number of configurable parameters). On the other hand, as
shown in Figure 11, in the case of our backtrack-free configuration approach,
this growth is linear with the size of the configuration problem.

50 100 150 200

10
20

30
40

#of configurable parameters

A
vg

. r
es

po
ns

e
tim

e
(m

s)

y = 1.422 + 0.006 * x + 0.001 * x^ 2
(R2 = 0.91)

Fig. 10. Quadratic growth of the av-
erage response time in our original
configuration approach.

500 1000 1500 2000

10
20

30
40

50
60

70

#of configurable parameters

A
vg

. r
es

po
ns

e
tim

e
(m

s)

y = 1.425 + 0.037 * x
(R2 = 0.98)

Fig. 11. Linear growth of the aver-
age response time in our backtrack-
free configuration approach.

Furthermore, Figure 11 gives an insight into the usability of our backtrack-
free configuration approach. According to a study reported in [25], 0.1 second
is about the limit for having the user feel that the system is reacting instan-
taneously. Figure 11 shows that our backtrack-free configuration approach can
respond instantly even for configuration problems with up to 2000 parameters.

6 Discussion

Normally, backtracking is used to explore the search space, in order to resolve
inconsistencies, or to find all solutions. In our configuration approach [4], we
use backtracking to resolve inconsistencies that may arise while configuring a
single product. Analyzing configuration scenarios shows that, in our approach,
most of these inconsistencies are due to early configuration of parameters that
are involved in some pending constraints. By delaying the configuration of such
parameters, using our ordering approach, we can prevent inconsistent configu-
rations. One should note that our approach cannot generally eliminate back-
tracking for every use-case, such as enumerating all configurations, or resolving
inconsistencies that may arise due to cyclic constraints.

For our backtrack-free configuration approach to be able to produce con-
sistent and complete products, the input reference architecture model must be

14

cycle-free. In particular, to guarantee the termination of the configuration al-
gorithm, the component hierarchy must be acyclic. Achieving this property for
embedded software systems, where the software architecture follows, to a great
extent, the architecture of hardware, is straightforward. To guarantee consis-
tency, without requiring backtracking, the model should contain no cyclic con-
straints. Whether this restriction can negatively affect the applicability of our
approach is a question that requires further investigation. Identifying the likeli-
hood of embedded systems with cyclic constraints and proposing heuristics for
ensuring their consistency with a minimum number of backtracks is left for fu-
ture work. Finally, our proposed ordering approach may introduce some rigidity.
Whether this rigidity affects usability negatively or not is an open questions that
should be studied in future.

7 Conclusion
Constraint solving is generally used to ensure consistency of configurations,
which are an essential part of software development in today’s industries. A
drawback of these techniques is the need for backtracking, which in the case
of interactive configuration drastically hampers usability. In this paper, we pro-
posed a partial ordering over the configurable parameters. The ordering is de-
rived from a static analysis of the constraints between the parameters. Using the
ordering approach, we have implemented a backtrack-free configuration tool. We
performed a number of experiments using a case study from an industry part-
ner. Results of our experiments show that our backtrack-free configuration tool
ensures consistency, while preventing the need for backtracking. Furthermore,
our approach significantly reduces the overall configuration time.

Acknowledgements
The first author acknowledges the Research Council of Norway (the ModelFusion
Project - NFR 205606). The second author is funded by the National Research
Fund - Luxembourg (FNR/P10/03 - Verification and Validation Laboratory).

References

1. A. A. Armstrong and E. H. Durfee. Dynamic prioritization of complex agents in
distributed constraint satisfaction problems. In AAAI/IAAI, 1997.

2. R. J. Bayardo and D. P. Miranker. A complexity analysis of space-bounded learning
algorithms for the constraint satisfaction problem. In AAAI, 1996.

3. R. Behjati and S. Nejati. Backtrack-free consistent configuration of cyber-physical
systems. http://simula.no/publications/Simula.simula.2608, 2014.

4. R. Behjati, S. Nejati, and L. C. Briand. Architecture-level configuration of large-
scale embedded software systems. Accepted for publication in TOSEM, 2014.

5. R. Behjati, T. Yue, L. C. Briand, and B. Selic. SimPL: a product-line modeling
methodology for families of integrated control systems. Information and Software
Technology, 2013. Special Issue on Software Reuse and Product Lines.

6. D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated analysis of feature models
20 years later: A literature review. Inf. Syst., 2010.

15

7. D. Benavides, S. Segura, P. Trinidad, and A. Ruiz Cortés. FAMA: tooling a frame-
work for the automated analysis of feature models. In VaMoS, 2007.

8. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput., 1986.

9. M. Carlsson and P. Mildner. SICStus Prolog – the first 25 years. CoRR, 2010.
10. M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain constraint

solver. In PLILP, 1997.
11. K. Czarnecki and P. Kim. Cardinality-Based Feature Modeling and Constraints:

A Progress Report. In Workshop on Software Factories at OOPSLA, 2005.
12. R. Dechter and D. Frost. Backjump-based backtracking for constraint satisfaction

problems. Artif. Intell., 136(2), 2002.
13. B. K. Eames, S. Neema, and R. Saraswat. DesertFD: a finite-domain constraint

based tool for design space exploration. Design Autom. for Emb. Sys., 14(2), 2010.
14. C. M. Fonseca and P. J. Fleming. An overview of evolutionary algorithms in

multiobjective optimization. Evolutionary Computation, 1995.
15. E. C. Freuder. A sufficient condition for backtrack-free search. Journal of the ACM

(JACM), 1982.
16. F. Glover and E. D. Taillard. A user’s guide to tabu search. Annals OR, 1993.
17. T. Hadzic, S. Subbarayan, R. M. Jensen, H. R. Andersen, J. Møller, and H. Hul-

gaard. Fast backtrack-free product configuration using a precompiled solution
space representation. In PETO, 2004.

18. P. V. Hentenryck, V. A. Saraswat, and Y. Deville. Design, implementation, and
evaluation of the constraint language cc(FD). In Selected Papers from Constraint
Programming: Basics and Trends, 1995.

19. Á. Horváth and D. Varró. Dynamic constraint satisfaction problems over models.
Software and Systems Modeling, 2010.

20. M. Janota, G. Botterweck, R. Grigore, and J. Marques-Silva. How to complete an
interactive configuration process? In SOFSEM, 2010.

21. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated anneal-
ing. Science, 1983.

22. F. J. Linden, K. Schmid, and E. Rommes. Software Product Lines in Action: The
Best Industrial Practice in Product Line Engineering. Springer-Verlag New York,
Inc., 2007.

23. R. Mazo, C. Salinesi, D. Diaz, and A. Lora-Michiels. Transforming attribute and
clone-enabled feature models into constraint programs over finite domains. In
ENASE, 2011.

24. Ugo Montanari. Networks of constraints: Fundamental properties and applications
to picture processing. Information Sciences, 7:95–132, 1974.

25. Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1993.

26. OMG. OMG Object Constraint Language (OMG OCL), Version 2.3.1, 2012.
27. K. Pohl, G. Böckle, and F. J. Linden. Software Product Line Engineering: Foun-

dations, Principles and Techniques. Springer-Verlag New York, Inc., 2005.
28. F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming. Else-

vier Science Inc., New York, NY, USA, 2006.
29. R. M. Smullyan. First-order logic. Springer, 1968.
30. E. R. van der Meer, A. Wasowski, and H. R. Andersen. Efficient interactive con-

figuration of unbounded modular systems. In SAC, 2006.
31. Y. Xiong, A. Hubaux, S. She, and K. Czarnecki. Generating range fixes for software

configuration. In ICSE’12, 2012.

16

