Skip to Main content Skip to Navigation
Journal articles

Model-Based Co-clustering for Ordinal Data

Julien Jacques 1, 2 Christophe Biernacki 3, 2
2 MODAL - MOdel for Data Analysis and Learning
LPP - Laboratoire Paul Painlevé - UMR 8524, Université de Lille, Sciences et Technologies, Inria Lille - Nord Europe, METRICS - Evaluation des technologies de santé et des pratiques médicales - ULR 2694, Polytech Lille - École polytechnique universitaire de Lille
Abstract : A model-based co-clustering algorithm for ordinal data is presented. This algorithm relies on the latent block model embedding a probability distribution specific to ordinal data (the so-called BOS or Binary Ordinal Search distribution). Model inference relies on a Stochastic EM algorithm coupled with a Gibbs sampler, and the ICL-BIC criterion is used for selecting the number of co-clusters (or blocks). The main advantage of this ordinal dedicated co-clustering model is its parsimony, the interpretability of the co-cluster parameters (mode, precision) and the possibility to take into account missing data. Numerical experiments on simulated data show the efficiency of the inference strategy, and real data analyses illustrate the interest of the proposed procedure.
Document type :
Journal articles
Complete list of metadata

Cited literature [32 references]  Display  Hide  Download

https://hal.inria.fr/hal-01448299
Contributor : Julien Jacques <>
Submitted on : Thursday, September 28, 2017 - 12:46:06 AM
Last modification on : Friday, November 27, 2020 - 2:18:02 PM
Long-term archiving on: : Friday, December 29, 2017 - 12:26:38 PM

File

ordinal-coclustering-Jacques-B...
Files produced by the author(s)

Identifiers

Citation

Julien Jacques, Christophe Biernacki. Model-Based Co-clustering for Ordinal Data. Computational Statistics and Data Analysis, Elsevier, 2018, 123, pp.101-115. ⟨10.1016/j.csda.2018.01.014⟩. ⟨hal-01448299v2⟩

Share

Metrics

Record views

594

Files downloads

1842