N
N

N

HAL

open science

USING INTERNAL MySQL/InnoDB B-TREE INDEX
NAVIGATION FOR DATA HIDING

Peter Fruhwirt, Peter Kieseberg, Edgar Weippl

» To cite this version:

Peter Fruhwirt, Peter Kieseberg, Edgar Weippl. USING INTERNAL MySQL/InnoDB B-TREE IN-
DEX NAVIGATION FOR DATA HIDING. 11th IFIP International Conference on Digital Forensics
(DF), Jan 2015, Orlando, FL, United States.

01449058

pp.179-194, 10.1007/978-3-319-24123-4 11 .

HAL Id: hal-01449058
https://inria.hal.science/hal-01449058
Submitted on 30 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01449058
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Chapter 11

USING INTERNAL MySQL/InnoDB
B-TREE INDEX NAVIGATION FOR
DATA HIDING

Peter Fruhwirt, Peter Kieseberg and Edgar Weippl

Abstract Large databases provide interesting environments for hiding data. These
databases store massive amounts of diverse data, they are riddled with
internal mechanisms and data pools for enhancing performance, and
they contain complex optimization routines that constantly change por-
tions of the underlying file environments. The databases are valuable
targets for attackers who wish to manipulate search results or hide traces
of data access or modification. Despite its importance, research on data
hiding in databases is relatively sparse. This chapter describes several
data hiding techniques in MySQL and demonstrates the impact of data
deletion on forensic analysis.

Keywords: Databases, data hiding, data deletion, index, InnoDB, MySQL

1. Introduction

Strong interest in big data analytics has significantly increased the
amount of data that is stored and accessed using high-performance tech-
niques. Databases enhance the performance of operations, especially
searching, and enable the reconciliation and linking of large data sets,
while supporting the inclusion of many complex operations. Large corpo-
rations routinely use data warehouses with workflow engines that auto-
matically enrich raw source data with operational information and data
from other data streams. These databases are often massive and provide
the foundation for many corporate activities (e.g., financial analysis and
billing).

Large databases are perfect places to hide data, more so because they
constitute a central and, usually, trusted part of an information technol-
ogy environment. This trust is usually achieved by applying automated

180 ADVANCES IN DIGITAL FORENSICS XI

control systems, sanity checks and audits of the higher software layers,
including the input data and results. The database itself usually func-
tions as a black box due to its high level of complexity, massive data
content, throughput and relatively opaque internal operations, often in-
troduced to enhance performance. This also results in considerable back-
ground noise when examining the deeper layer of file operations; this ef-
fectively hinders classical forensic approaches. Furthermore, a database
typically holds large amounts of sensitive data, making it easier to hide
data inside the database instead of extracting the data and secreting it
elsewhere.

Two types of techniques are used to hide data: (i) data removal; and
(ii) data disguise. Data hiding seeks to make data inaccessible with-
out leaving any traces while data disguise involves hiding data in other
normal-looking data (e.g., using steganography). An important differ-
ence exists between data hiding and cryptography. According to Bender
et al. [1], the goal of data hiding “is not to restrict or regulate access
to the host signal, but rather to ensure that embedded data remain
inviolate and recoverable.”

The main requirements for data hiding techniques are [1]:

m Access to the hidden or embedded data must be regulated.
m The hidden data must be recoverable.
m The integrity of the hidden data must be ensured.

This chapter proposes several techniques for hiding data in database
management systems using index manipulation. A novel approach is
presented for evaluating the data hiding techniques. The practical ap-
plications of the techniques are showcased using MySQL/InnoDB index
mechanisms.

2. Background and Related Work

Databases not only store large amounts of information, but also sub-
stantial meta-information in order to facilitate fast searches and other
operations on tables. Thus, considerable space is allocated that is in-
visible to database users, but that is, nevertheless, affected by opera-
tions and internal mechanisms. This section briefly discusses the use of
database meta-information to hide data as well as the related topic of
database forensics, especially forensic analyses of the index structure.

Traditional database forensics is mainly focused on analyzing the un-
derlying filesystem layer to recover modified files [6, 13]. Internal mecha-
nisms for guaranteeing database correctness and providing rollback func-
tionality have been used for forensic purposes [4, 5|.

Fruhwirt, Kieseberg & Weippl 181

Lahdenmaki and Leach [10] provide details of the internal workings of
indices at a generic level, as well as related to database management sys-
tems and their underlying storage engines. They also discuss the efficient
implementation of database indices, which is one of the basic require-
ments for creating slack space in real-world systems. Further analysis of
the internal workings of index trees is provided in [11], where the pos-
sibility of using the structures for forensic purposes is also mentioned.
Koruga and Baca [9] discuss how B-trees can be used for FAT32 filesys-
tem forensics by searching for remnants of deleted data in the underlying
navigation tree. Another approach utilizing the index tree for forensics
is discussed in [12]: since the BT-tree for a given set of elements is not
unambiguous, the exact structure depends on the order in which the
elements are inserted into the tree. Kieseberg et al. [8] have described
several scenarios where manipulations of indexed data in a database can
be detected by studying the structure of the underlying B™-tree. Based
on these observations, Kieseberg et al. [7] have proposed a new logging
mechanism.

Pieterse and Olivier [14] have proposed some practical techniques for
hiding data in PostgreSQL implementations. The techniques employ
the SQL interface to hide structures, which makes them easy to imple-
ment, but also easy to detect in forensic investigations. In contrast,
this research focuses on techniques that hide data deep inside the inter-
nal mechanisms, significantly hindering detection. Furthermore, several
layers for manipulating query results are provided, allowing for targeted
manipulations (e.g., of automated queries) without changing the results
of manual investigations or audit routines.

3. InnoDB Index

In InnoDB, data is stored in the form of an index tree based on
the primary index, which is mandatory for every table. The data and
the primary index are thus closely intertwined and directly affect each
other; secondary indices are quite different because they solely exist for
the purpose of speeding up specific searches. When creating a table,
InnoDB generates an index for the primary key (an auto-incremented
id-column is generated if no column is specifically selected). The actual
data records are then stored directly inside the BT -tree structure of the
index. An additional index tree is generated for each secondary key, this
index tree holds pointers to the respective pages in the primary key.

InnoDB uses a BT-tree to locate pages. The first INDEX page in the
tablespace is called the root node. All the data (keys and data records
for the primary key and the corresponding links to the primary key

182 ADVANCES IN DIGITAL FORENSICS XI

pages in the case of secondary indices) are stored in the leaf nodes of
the tree. All the other pages (i.e., inner nodes of the tree) are only used
for navigation and do not contain any user records (note that, in very
small tables, the root node may be the (only) leaf node). All the leaf
nodes are sorted and are, therefore, implemented as a singly-linked list.
For faster navigation within a page, InnoDB uses a page directory that
directly links to every fourth to eighth element.

The index is physically stored in pages, which are containers of size
of 16 KiB. The pages are stored in tablespace that resides in ibdataX
files (global tablespace) or in *.ibd files if the file-per-table feature
is active. Each INDEX page contains a FIL header, which incorporates
meta-information about the page itself: an INDEX header with a lot of
data related to the index, a FSEG header with certain pointers, infimum
and supremum records and a FIL trailer containing checksums.

The user records are located right after the various headers in a page
and are physically stored in order of their insertion. Next pointers are
used for each record to create an ordered singly-linked list in which the
infimum record points to the first record. The user records use the
next pointer field to link to the next entry in ascending order. The
next pointer of the last user record points to the supremum record that
signals the index navigation algorithm that all the records of the page
have been read.

4. Data Removal

For performance reasons, InnoDB does not physically delete records.
In fact, data records persist after deletion as a result of delete flags [2].
These garbage records are overwritten in the future if the space is needed.

As mentioned above, InnoDB uses a singly-linked list for navigation
within a page. Specifically, InnoDB uses two INDEX header fields: (i)
a pointer to the start of the free record list of a page; and (ii) a field
that stores the number of bytes of deleted records. Figures 1 and 2
illustrate the deletion process of a data record (note that “@Qz” denotes
an z-byte page offset, i.e., the physical data address in the filesystem).
The garbage offset points to the first deleted record on the current page.
As in the case of stored data records, InnoDB uses a singly-linked list
for deleted records; the last deleted record points to itself, which signals
the end of the list.

4.1 Physical Deletion of Data Records

When a record is deleted, InnoDB changes the deleted flag to one.
Also, it updates the next pointer of the previous record in ascending

Fruhwirt, Kieseberg & Weippl 183

I (@99 Record Page @112| S
¥ f-ﬂ
C C C C
1™ 2 4| |5

@125 @150 @175 @200 @225

Garbage @44
Offset l

Figure 1. One deleted record.

| [@99 Record Page @112 S

)'c c ch

1™ 2 4

@125 @150 @175 @200 @225

Garbage | @44

Offset l

Figure 2. Pointer to deleted records in a page.

order and points to the next record or the supremum if the last record
on the page is deleted. Additionally, the INDEX header is updated, i.e.,
the garbage size field is increased by the size of the deleted record and the
pointer to the last inserted record is overwritten with 0x00000 (Offset:
0xO0A). Internally, the last record of the deleted record list now points to
the currently deleted record instead of to itself.

4.2 Forensic Impact

Previous research [2-4] has shown that physically-deleted records can
be recovered by directly reading the filesystem. Several additional ob-
servations can be made based on the index and the actual algorithm
that is used:

» Timeline Analysis: The design makes it possible to reconstruct
the sequence of deletions using the next pointer of the singly-linked
free record list of a page. A new deleted record is added to the
end of the list.

184 ADVANCES IN DIGITAL FORENSICS XI

s Data Retention: InnoDB replaces deleted records in the page
record free list only if certain conditions are met. First, a new
record must be on the same page as the deleted record, which is
determined by the structure of the BT-tree. In the case of an auto-
incrementing table, this is unlikely because new data records are
only on the last page due to the incrementing primary key. If a
new record is assigned to the page, InnoDB iterates over the page
record free list to find a deleted record with the exact size. If the
requirement is not met, InnoDB creates a new page and does not
overwrite the deleted records. This method is very efficient, which
is important for database management systems. However, it re-
sults in long retention times for deleted records, which is excellent
from the point of view of digital forensics. Only a complete ta-
ble recreation or table reorganization force InnoDB to overwrite
deleted records.

m Slack Space: InnoDB heavily uses pointers for navigation within
pages. It is, therefore, possible to manipulate pointers to create
areas that are not accessed by the storage engine, thereby creating
slack space within stored files. This feature creates the basis for
data hiding.

5. Data Hiding

This section shows how the structure, and especially the removal
mechanism, of the index can be used to create slack space for hiding
data. The section also shows how to recover the hidden data. Several
techniques for hiding data using the index are described along with their
benefits and shortcomings.

5.1 Manipulating Search Results

In large-scale databases, data is usually retrieved with the help of
secondary (search) indices to provide the desired performance. The de-
pendency on the index can be used to hide data by making it invisible
to common searches without actually removing the data from the table.
This works by unlinking the index entries that point to the data hidden
in the table from the rest of the index, but without modifying the un-
derlying table. If this is done for all relevant searches and their indices,
then the data is not retrievable via normal operations. However, the
data can be accessed using SELECT statements that do not use modified
indices or any index at all.

InnoDB uses two types of indices: (i) primary indices, where each
table has exactly one primary index that is applied to the primary key

Fruhwirt, Kieseberg & Weippl

185

| ! @99 Index Page @112 | S
c J c] c J C) C o C -
1 o2 1 3 |4 1 5 1 6 :
@125 '\\ @150'\\ @175’\\ @200 “\\ ‘," @225 @250 |
N N - A ~ -~ ~ !
R AN XX e T el el R !
\ \\ vi v2 v3 v4 v5 v6 .

\ \
oo A Secondary
_______________________ ! Index

I ! @99 Index Page @112 | S
C o (o ~ c » c N c » c 4t —
1 2 13 4 I 5 6 :

)
@125 %, @150 N @175% @200 /7 @225 @250 :
\\ ~ ~ - \ l
\ N L ¥e pN ¥y ¥ « !
\
AR \\\ v v2 v3 v4 v5 ve L-
\ \
N R dee e Secondary
M e ! Index

Figure 3. Manipulating search results.

of the table; and (ii) secondary indices that are used to enhance search
performance. In this approach, the primary index is left unchanged and
only the secondary indices are modified. This is reasonable because the
primary index is usually an auto-incremented unique field that is not
used for actual data retrieval in large databases.

Figure 3 shows how a secondary index can be manipulated to hide
data. The index contains a copy of the indexed columns with pointers
to the actual record pages where the records are stored. In order to hide
a record, the links in the secondary index leading to and from the record
and its neighbors are removed and replaced with a direct link between
the two neighbors (e.g., vs in Figure 3 is unlinked from the tree structure
and a new link is set to connect its former neighbors, vy and vg). The
record no longer exists in the search tree (secondary index) although it
has not been removed from the primary index.

The following general approach is used to hide data:

m The table that will contain the hidden data is generated or se-
lected. The primary index should be chosen in a way that makes

186 ADVANCES IN DIGITAL FORENSICS XI

it unsuitable for normal searches (e.g., by adding a generic auto-
incrementing id-column that possesses the uniqueness property).

m Secondary indices are generated for all SQL queries used to access
table data during normal operations.

m The data to be hidden is written to the table in the form of table
entries.

m The links to the data to be hidden are removed from the secondary
indices using the approach described above. It is vital that the
manipulation of the page index is not omitted.

m The hidden data may be accessed using the primary index or an
unmanipulated secondary index.

The main drawback of this approach is that the hidden data can be
found by searching via the primary index or by employing unindexed
searches. Nevertheless, in many real-world applications (e.g., data ware-
houses), all the queries involved in the extraction workflows are indexed
to obtain the desired performance (e.g., for data cubes).

5.2 Reorganizing the Index

While the approach discussed in the previous section has merits, the
actual pages holding the table data are still accessible by the database
interface; only searching for them using secondary indices is thwarted.
The countermeasures are to simply drop and recreate indices regularly
or to use searches based on non-indexed columns or the primary index.
Therefore, alternative techniques are proposed for hiding data inside
the actual index pages. These techniques reorganize the next pointers
to create slack space and force the database to skip the hidden records.

Figure 4 shows how a primary index can be manipulated to hide data.
The index contains the actual data records, which are linked using the
next pointers. In order to hide a record, the links in the primary index
leading to/from the record and its neighbors are removed and replaced
by a direct link. For example, C's in Figure 4 is unlinked from the tree
structure and a new link is set to connect its former neighbors, C7 and
Cy. Also, the record must be removed from the page directory, which
has a direct pointer to every fourth to eighth element to support faster
searches within the page. Note that the directory has to be reorganized
if the hidden record is referred to by the page directory.

The following general approach is used to hide data:

m The table that will contain the hidden data is generated or selected.

Fruhwirt, Kieseberg & Weippl 187

Index Page @112 | S

,’ @125 @150 @175 @200" @225 @250 @275 @300 '@400
L e A-mmm
,/ —————— —— \: _____ P 4 \\
/7 L A\
/ Page @425 @400 @300 @200 @99 ‘\
‘\\ Directory owned: 8 | owned: 4 | owned: 4 | owned: ‘1‘ owned: 1 /I

’ Page @425 @400 @200 @99 \
N Directory owned: 8 | owned: 7 | owned:4 | owned:1 ,

S~ -
- —————
- -—————— D -
———er e m— - ———— ——— =~

Figure 4. Reorganizing the index.

m The data to be hidden is written to the table in the form of table
entries.

m The links to the data to be hidden are removed from the primary
indices using the approach described in Section 5.1.

m The hidden data may be retrieved using classical forensic methods
such as file carving on database records [2] or by reorganizing the
pointers and using them to access the hidden data.

Note that the hidden records are still accessible via the secondary
indices and have to be further hidden using the technique described in
Section 5.1.

5.3 Hiding Data in Index Page Garbage Space

This section describes techniques for hiding data within the index
pages, thus removing the data from the table altogether. These tech-
niques can be seen as extending the original approach to the primary
index. The main difference when removing a primary index compared
with a secondary index is that the primary index constitutes the table
content (i.e., all records belonging to a table are indexed by the pri-

188 ADVANCES IN DIGITAL FORENSICS XI

mary index and any record removed from it is also removed from the
table). The principal danger in manipulating the primary index is the
generation of inconsistencies that not only enable manipulations to be
detected, but also potentially destroy the correctness of large portions
of the database.

Section 4 described the internal workings of data removal from the
primary index by unlinking the record in the tree and linking it to the
list of deleted records starting with the garbage offset. Section 5.1 de-
scribed how secondary indices can be modified to manipulate searches.
Thus, there are two starting points for hiding data from the primary
index. First, it is possible to manipulate the delete operation in order
to not link the deleted record to the list of deleted records; thus, the
space containing the hidden data is not overwritten by the database.
Second, the approach of unlinking the record in the secondary indices
can be extended to the primary index; this links the neighboring records
and removes the links to the hidden record. In the case of the second
approach, it is also necessary to remove the links in all the secondary
indices so as not to create inconsistencies in the database.

This approach can be extended to the primary index data hiding
mechanisms (Section 5.2). Specifically, the hidden record stored in the
table is unlinked as in the case of deletion, but it is not linked to the
garbage collection. This also involves unlinking the record in every sec-
ondary index.

The following generic approach can be used to remove the data to be
hidden from the primary index and, thus, from the table:

m The table that will contain the hidden data is generated or selected.
No requirements are imposed on the primary index, especially re-
lated to its use in searches.

m The record holding the data to be hidden is removed from the
table using a modified version of the delete operation (see the next

step).

m When deleting the associated entry in the index tree, a modifica-
tion of the delete operation is applied. While the record is un-
linked from the tree as is done normally, it is not linked to the
list of deleted records; thus, it is not marked as being available
for future use. Since this is the only change with respect to the
original deletion mechanism, all the secondary indices are updated
normally.

m The hidden data may be retrieved using classical forensic methods
such as file carving.

Fruhwirt, Kieseberg & Weippl 189

FIL Header | INDEX Header | FSEG Header | Infimum / Supremum

User Records

Free Space

Page Directory
FIL Trailer

=

Figure 5. Physical structure of an index page.

The drawback of this method is that the insert and delete operations
leave traces in the transaction log and other locations. This drawback is
addressed by not hiding the data in the underlying table, but, instead,
storing some arbitrary, unsuspicious data. Then, after unlinking the
record from the index, the free space is filled with the data to be hidden
using file carving. This has the additional benefit that the data can be
changed later (i.e., the method is only used to create slack space that is
not allocable by the database).

Unfortunately, navigation by file carving is rather tedious and in-
efficient if many reads need to be done. To enhance the usability of the
slack space, a further enhancement is necessary. Analogous to the linked
list of free space that starts with the garbage offset, the enhancement
involves linking all the generated slack space in a page starting with a
hidden page offset and a link to the first hidden record. The last record
links to itself in order to signal the end of the list. This allows for easy
navigation through the slack space in a page, because only the hidden
page offset needs to be found by file carving.

Hidden page offsets can be linked together to further enhance searches
in the slack space. This is done by generating a B*-tree and creating a
shadow index much like the primary index of a regular table.

5.4 Hiding Data in Index Page Free Space

Due to the physical structure of a page, some free space exists that
is allocated by the storage engine but not used (see Section 3). Fig-
ure 5 shows the structure of an index page. New records are written
to the user record space towards the FIL trailer in the order of their
insertion. Simultaneously, the page directory grows towards the user
records. If the two sections meet, the free space of the page is exhausted
and the page is considered to be full. This free space is not used by the
database management system and can be used to hide data. However,
unlike the other data hiding techniques, this technique does not protect

190 ADVANCES IN DIGITAL FORENSICS XI

against overwriting because the database management system considers
the space to be free.

5.5 Removing a Page from the Index

InnoDB uses pointers between pages to create a BT-tree. These point-
ers are used to find the page where the requested data is stored. All the
leaf nodes contain the actual record data, unlike the non-leaf nodes that
only contain pointers to the next pages. All the pages at the same level
are doubly-linked to their predecessors and successors. As in the case of
index reorganization (Section 5.2), it is possible to change the pointers
to unlink a page and use it to hide data. However, our experiments
revealed that this approach is infeasible because, in general, a regular
page contains considerable data that is also referred to by the secondary
indices, which results in many additional updates. Furthermore, the
BT-tree has to be rearranged, which creates massive overhead.

According to the internal source documentation of InnoDB, the data-
base storage engine accesses every data record exclusively via the pri-
mary index. If a record is not accessible via this index, the data record
does not exist as far as the database management system is concerned.
This architecture makes sense with regard to performance, but it can be
misused for data hiding purposes as described above.

Since it would be imprudent to rely solely on the source code docu-
mentation, a new method was created in order to evaluate the data
hiding techniques. The basic idea is to create a set of queries that are
executed on a manipulated table space. A check is made if a test to-
ken that was hidden earlier can be retrieved and if the storage engine
crashes as a result of the data hiding technique. It is impossible to
cover all possible query combinations. However, it is feasible to use a
fuzzy testing approach that generates a large test set that simulates a
real-world environment and, because the navigation algorithms are lim-
ited, it is possible to guarantee with some certainty that all the query
combinations are covered.

The randgen SQL generator (launchpad.net/randgen) was used in
the evaluation. Originally designed for functional and stress testing, this
tool implements a pseudorandom data and query generator. Test cases
were generated using a context-sensitive grammar and input to randgen.

In the evaluations, only queries that actually rely on the existence of
data (i.e., that reveal the existence of the hidden token) were considered.
The following operations fulfill this requirement:

m SELECT operations

m JOIN operations

Fruhwirt, Kieseberg & Weippl 191

m INSERT operations with ON DUPLICATE UPDATE

Note that no functions, procedures, triggers, sub-queries or views were
used. This is because they are handled by the same internal functions
and mechanisms as the operations listed above.

The following (simplified) context-sensitive grammar specifying the
SELECT syntax was used:

SELECT
[ALL | DISTINCT | DISTINCTROW] [SQL_CACHE | SQL_NO_CACHE]
select_expr [, select_expr ...]

[FROM table_references
[WHERE where_condition]
[GROUP BY {col_name | expr | position}
[ASC | DESC], ... [WITH ROLLUP]]
[HAVING where_condition]
[ORDER BY {col_name | expr | position}
[ASC | DEsC], ...]
[LIMIT {[offset,] row_count | row_count OFFSET offset}]

To generate a valid and adequate test set, the where_condition was
used to force the database management system and the query optimizer
to (preferably) use different types of index navigation (i.e., SQL caches,
direct access and area searches).

The evaluation procedure executed concrete SQL statements derived
using the grammar on a manipulated table containing the hidden to-
ken. A test case failed if the hidden token was not retrieved. When
a failure occurred, MySQL internal tools such as EXPLAIN queries were
used to determine the navigation algorithms that were used and the re-
sults were grouped into different categories: full-table scans (e.g., SELECT
statements without an index or SELECT statements without WHERE condi-
tions); direct access using a primary key (i.e., JOIN operations and WHERE
conditions using primary key fields); and indirect access using secondary
indices (i.e., WHERE conditions using a secondary index); and area scans
using conditions (e.g., BETWEEN). Table 1 presents the evaluation results,
including the availability of the hidden token using different queries and
if the data hiding is persistent and resistant to accidental overwriting by
the database management system.

Note that classical SQL uses full-table scans to create data backups.
Due to its design, all the index information is lost; therefore, some mod-
ifications such as the manipulation of the search results would not be
uncovered in digital forensic investigations. Such data tampering can
only be detected by examining the live system. However, this is rarely
done because of possible side effects to the production system.

192 ADVANCES IN DIGITAL FORENSICS XI

Table 1. Hidden data accessible via an SQL interface.

Full Table Primary Secondary Persistent

Manipulating the search re- Yes Yes No Yes
sults

Reorganizing the index No No Yes Yes
Hiding data in index garbage No No No Yes
space

Hiding data in index page free No No No No
space

Removing a page from the in- Yes Yes No Yes
dex

6. Conclusions

This research has demonstrated how indices in InnoDB can be manip-
ulated in order to hide data. Five data hiding techniques were proposed,
each with different characteristics and benefits. The techniques manip-
ulate the underlying index structures, making it possible to hide data as
well as create free slack space in InnoDB. Depending on the technique,
the data may retrieved via an SQL interface by issuing suitable SELECT
statements or by using advanced file carving methods.

An important practical application is the ability to adjust secondary
indices so that hidden data still resides in database tables, making it
available for sanity checks and forensic investigations. This is especially
useful in the case of large data warehouses used for automated workflows.
While the statements used in workflow routines are typically indexed to
guarantee the desired performance, manual investigations usually target
unindexed searches. Thus, it is possible to manipulate a database so
that the hidden data is not accessible by indexed searches and, thus,
also by the actual workflow, while making the manipulations invisible to
sanity checks and forensic investigations. This also demonstrates that
the results returned from a database using an SQL interface cannot be
trusted.

The research also shows that an arbitrary amount of hidden slack
space can be created in a database. The slack space cannot be searched
or modified via an SQL interface and is, therefore, stable with respect
to normal database operations. The slack space is especially valuable
because it resides directly inside normal data files that are continually
changed during normal operations, making additional changes practi-
cally impossible to detect via traditional digital forensic techniques (al-
though file carving can be used to access the hidden data [2]). Additional

Fruhwirt, Kieseberg & Weippl 193

structures are also implementable in this slack space in order to boost
performance.

In conclusion, it is possible to manipulate and hide data inside data-
bases with a potentially large impact on operations in data warehouses
as well as on traditional filesystem-based forensics. Future research will
extend the techniques to other prominent database management systems
and will conduct large-scale case studies involving corporate databases.

Acknowledgement

This research was supported by the Austrian Research Promotion
Agency (FFG) under the Austrian COMET Program and the Hochschul-
jubildumsstiftung der Stadt Wien.

References

[1] W. Bender, D. Gruhl, N. Morimoto and A. Liu, Techniques for data
hiding, IBM Systems Journal, vol. 35(3-4), pp. 313-336, 1996.

[2] P. Fruhwirt, M. Huber, M. Mulazzani and E. Weippl, InnoDB data-
base forensics, Proceedings of the Twenty-Fourth IEEE Interna-
tional Conference on Advanced Information Networking and Ap-
plications, pp. 1028-1036, 2010.

[3] P. Fruhwirt, P. Kieseberg, K. Krombholz and E. Weippl, Towards a
forensic-aware database solution: Using a secured database replica-
tion protocol and transaction management for digital investigations,
Digital Investigation, vol. 11(4), pp. 336-348, 2014.

[4] P.Fruhwirt, P. Kieseberg, S. Schrittwieser, M. Huber and E. Weippl,
InnoDB database forensics: Reconstructing data manipulation
queries from redo logs, Proceedings of the Seventh International
Conference on Availability, Reliability and Security, pp. 625—633,
2012.

[5] P.Fruhwirt, P. Kieseberg, S. Schrittwieser, M. Huber and E. Weippl,
InnoDB database forensics: Enhanced reconstruction of data ma-
nipulation queries from redo logs, Information Security Technical
Report, vol. 17(4), pp. 227-238, 2013.

[6] A. Grebhahn, M. Schaler and V. Koppen, Secure deletion: Towards
tailor-made privacy in database systems, Proceedings of the Fif-

teenth Conference on Database Systems for Business, Technology
and Web, pp. 99-113, 2013.

194

[7]

8]

[10]

[11]

[12]

[14]

ADVANCES IN DIGITAL FORENSICS XI

P. Kieseberg, S. Schrittwieser, L. Morgan, M. Mulazzani, M. Hu-
ber and E. Weippl, Using the structure of BT-trees for enhancing
logging mechanisms of databases, International Journal of Web In-
formation Systems, vol. 9(1), pp. 53-68, 2013.

P. Kieseberg, S. Schrittwieser, M. Mulazzani, M. Huber and
E. Weippl, Trees cannot lie: Using data structures for forensic pur-

poses, Proceedings of the Furopean Intelligence and Security Infor-
matics Conference, pp. 282-285, 2011.

P. Koruga and M. Baca, Analysis of B-tree data structure and its
usage in computer forensics, Proceedings of the Central FEuropean
Conference on Information and Intelligent Systems, 2010.

T. Lahdenmaki and M. Leach, Relational Database Index Design
and the Optimizers, John Wiley and Sons, Hoboken, New Jersey,
2005.

H. Lu, Y. Ng and Z. Tian, T-tree or B-tree: Main memory database
index structure revisited, Proceedings of the Eleventh Australasian

Database Conference, pp. 65-73, 2000.

G. Miklau, B. Levine and P. Stahlberg, Securing history: Privacy
and accountability in database systems, Proceedings of the Third
Biennial Conference on Innovative Data Systems Research, pp. 387—
396, 2007.

P. Stahlberg, G. Miklau and B. Levine, Threats to privacy in the
forensic analysis of database systems, Proceedings of the ACM SIG-

MOD International Conference on Management of Data, pp. 91—
102, 2007.

H. Pieterse and M. Olivier, Data hiding techniques for database
environments, in Advances in Digital Forensics VIII, G. Peterson
and S. Shenoi (Eds.), Springer, Heidelberg, Germany, pp. 289-301,
2012.

