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Chapter 9

CHARACTERISTICS OF MALICIOUS
DLLS IN WINDOWS MEMORY

Dae Glendowne, Cody Miller, Wesley McGrew and David Dampier

Abstract

Dynamic link library (DLL) injection is a method of forcing a running
process to load a DLL into its address space. Malware authors use
DLL injection to hide their code while it executes on a system. Due
to the large number and variety of DLLs in modern Windows systems,
distinguishing a malicious DLL from a legitimate DLL in an arbitrary
process is non-trivial and often requires the use of previously-established
indicators of compromise. Additionally, the DLLs loaded in a process
naturally fluctuate over time, adding to the difficulty of identifying ma-
licious DLLs. Machine learning has been shown to be a viable approach
for classifying malicious software, but it has not as yet been applied to
malware in memory images. In order to identify the behavior of ma-
licious DLLs that were injected into processes, 33,160 Windows 7 x86
memory images were generated from a set of malware samples obtained
from VirusShare. DLL artifacts were extracted from the memory images
and analyzed to identify behavioral patterns of malicious and legitimate
DLLs. These patterns highlight features of DLLs that can be applied as
heuristics to help identify malicious injected DLLs in Windows 7 mem-
ory. They also establish that machine learning is a viable approach for
classifying injected DLLs in Windows memory.

Keywords: Malware, DLL injection, memory analysis

1.

Introduction

Malware manifests itself in a variety of forms in Windows systems de-
pending on the malware authors’ needs and capabilities. For example,
malware may run as its own process, as code injected into another pro-
cess, as a service or as a driver. New techniques for executing malicious
software in Windows systems arise occasionally, designed by malware
authors in order to subvert detection and analysis. Each form of mal-



150 ADVANCES IN DIGITAL FORENSICS XI

ware has its own characteristics that distinguish it from others and each
generates a different set of artifacts that may be used for detection.

Code injection describes any situation where malicious software might
copy code to the memory space of an existing legitimate process, with
the goal of executing the code either immediately or as part of a “hook”
placed in the target process. Dynamic link library (DLL) injection is
a form of code injection that inserts a malicious DLL into a separate
legitimate process [7]. The DLL may be loaded directly at runtime or
it could be loaded automatically the next time a process executes. This
chapter focuses on malware that performs DLL injection to accomplish
its goals.

Malware authors implement DLL injection for two primary reasons.
First, injection provides a level of stealth to malware code as it executes;
any actions taken by the DLL appear to originate from the process. Sec-
ond, it grants malware the execution context of the “container” process.
This allows malware to utilize system resources with the privileges of
the host process such as the filesystem, registry and network access. If
a botnet client needs to contact its command and control server, it may
inject a DLL into a web browser to bypass host-level, process-specific
firewalls that might otherwise block access.

This chapter explores the characteristics of malicious DLLs in Win-
dows 7 x86 memory images. This is accomplished by executing malware
samples in a sandboxed environment and acquiring memory. Volatility
is used to extract features associated with a DLL sample, such as the
host process, load path, base address and load count [16]. These features
are analyzed to identify behavioral patterns in injected DLLs. Identify-
ing these patterns serves two purposes. First, the patterns contribute
to the general knowledge of malicious behavior in memory and can be
used by forensic examiners as heuristics to aid in identifying malicious
injected DLLs in Windows 7 memory images. Second, the patterns de-
fine characteristics of malicious injected DLLs that can help distinguish
between malicious and legitimate DLLs. Distinctive behavioral patterns
are necessary for machine learning to produce a robust model for reli-
ably classifying new data. Machine learning has previously been used
to classify malicious PE (portable executable) files using static and dy-
namic features [11]. Preliminary analysis reveals that it is also viable
for classifying malware in Windows memory images.

This research makes two principal contributions. The first is a proce-
dure for generating and processing large quantities of infected memory
images to identify injected DLLs. The second contribution is the ex-
traction of behavioral information drawn from the data as it relates to
malicious and legitimate DLLs in a system.
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2. Motivation

Several challenges are associated with identifying the use of malicious
DLLs by a process. The use of legitimate DLLs by a process may make
it more difficult to identify malicious DLL use. The variety of tech-
niques used to inject malicious code, including DLLs, further increases
the difficulty. This research address the complex and dynamic nature of
DLL usage to identify DLLs in memory images that are considered to
be malicious.

Runtime dynamic linking occurs when a DLL is loaded at runtime by
a process or another DLL. A DLL loaded in this manner provides some
required functionality and may be unloaded shortly after the requirement
is met or it may persist within the process. Legitimate software that
provides plug-in or add-on interfaces frequently uses this capability [12].
This leads to discrepancies in the DLLs loaded by a process based on
the point in time at which its DLL list is examined.

Malware may be injected as a DLL into a running process by utilizing
the same system code that is used to load legitimate runtime DLLs. The
use of an identical loading mechanism enables malicious DLLs to better
blend in with their legitimate counterparts. Many of the artifacts gener-
ated by this loading process are the same as, or at least not significantly
different from, other legitimate DLL loading artifacts.

3. Related Work

While this work focuses on the effective identification of DLL injection
events during dynamic analysis, a body of research covers the more gen-
eral problem of detecting malware in memory. The Blacksheep rootkit
detector [2], for example, compares memory images from multiple sys-
tems to perform a variety of analyses. Blacksheep compares the loaded
kernel modules between memory images as well as the code in the kernel
space itself. Kernel data structures and entry points to kernel code are
also checked for differences. After the comparison procedure, memory
images are clustered based on their combined distances from each other
based on the comparison features.

Mandiant’s Memoryze [8], when incorporated as a part of the Red-
line investigation tool, can be used to scan memory images and apply
heuristics to assign scores to objects in memory that could be malicious.
Other commercial products, such as Malwarebytes [1], scan memory in
search of malicious software. However, the mechanisms and criteria used
by these products are not always transparent and little information is
published on the techniques that determine the features used to cluster
and identify malicious code.
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Gionta et al. [5] have designed an architecture for memory virus scan-
ning as a service. The architecture allows for the efficient acquisition
and scanning of memory in massive virtual environments. In this way,
in-depth memory analysis techniques, such as those described in this
chapter, can be efficiently used with minimal impact on virtual machine
operations.

In the general case, determining if a piece of software would exhibit
malicious behavior is undecidable [3]; extensive reverse engineering is
typically required to understand the functionality of the underlying code
and craft detection signatures. Signature-based scanners are grossly in-
adequate for detecting sophisticated modern malware [6]. This has led
to the use of machine learning for classifying software as benign or ma-
licious [11]. The research in this area is extensive, but the focus is nor-
mally on identifying features in a Windows PE file such as byte n-grams,
API calls and opcodes, and using the features to train a classifier. The
features listed in this work are based on in-memory structures and the
way that observed malware uses the structures. However, there is some
overlap with existing research because features are extracted from PE
headers in memory.

4. Test Data Generation

The test data was generated from a set of 33,160 malware samples
obtained in 2012 from VirusShare [14]. The malware samples were sub-
sequently processed by VirusTotal [15]: 97.29% of the samples were
labeled as malicious by ten or more scanners. Additional verification
was done using Metascan [10], which labeled 97.16% of the samples as
malicious with a minimum detection rate of ten scanners.

The malware samples were then processed using the Cuckoo Sand-
box [4]. The samples were submitted to a SQLite database where they
were queued until they were processed. The Cuckoo host sent each
queued sample to a Cuckoo analysis virtual machine running Windows 7
x86 with 512 MB of allocated memory. Since the sandbox does not pro-
vide external access to the Internet, INetSim was used to simulate vari-
ous services; this caused some malware to exhibit additional functional-
ity. The malware was executed in the Cuckoo analysis virtual machine
for four minutes while being monitored by the Cuckoo agent, which runs
as a Python script in the Cuckoo analysis virtual machine. The data
collected about the malware included Windows API calls; network, reg-
istry and file interactions; and a memory capture of the system after
malware execution. After this data was collected and compressed on
disk, the Cuckoo analysis virtual machine was restored to the baseline
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Figure 1. Data generation process.

INetSim

snapshot and the next piece of malware from the queue was passed to
the virtual machine. Figure 1 illustrates the process. Note that the data
collected from Cuckoo by processing a piece of malware is referred to as
a “cuckoo sample.” A total of 33,160 cuckoo samples were generated.

While each cuckoo sample contains several types of information re-
lated to the execution of a piece of malware, this work focuses on data
obtained solely from infected memory images. Volatility [16] was used
to extract DLL artifacts from each memory image. The virtual address
descriptor tree was traversed for each process to find nodes containing
the mapped files. Artifacts were extracted from data structures asso-
ciated with each node, including _LDR_DATA_TABLE_ENTRY, _MM-
VAD and _.EPROCESS. The artifacts were combined to create a data
point describing a given DLL.

5. Data Classification

Each memory image in the dataset had between 615 and 1,645 loaded
DLLs. Each of these DLL data points had to be classified before analysis
could be performed. A DLL and its host process were classified into one
of four categories:

m Legitimate processes containing legitimate DLLs.
m Legitimate processes containing malicious DLLs.
m  Malicious processes containing legitimate DLLs.

m  Malicious processes containing malicious DLLs.

A whitelist of all the files was created from the baseline snapshot of
the analysis virtual machine. For a given data point, the process and
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Table 1. Dataset distribution.

All Unique

Injected DLLs 2,385 1,168
Legitimate DLLs 162,567 152,883

DLL were compared against the whitelist to determine the classification.
Injected DLLs refers to DLLs categorized as “Legitimate processes con-
taining malicious DLLs.” Legitimate DLLs refers to either “Legitimate
processes containing legitimate DLLs” or “Malicious processes contain-
ing legitimate DLLs.” This work has opted to use the latter category
because it provides a greater variety of legitimate DLLs than the former.

Each memory image contained the same legitimate processes. The
processes tended to load the same DLLs across memory images, so using
the set of “Legitimate processes containing legitimate DLLs” yielded
large sets of repeated DLLs. When a malicious process is executed,
it typically loads several system DLLs it requires for execution. These
DLLs may not have been loaded by any of the other legitimate processes.
Because the focus is on the DLLs and their behavior and appearance in
memory, as long as they are legitimate, the nature of the loading process
(whether malicious or legitimate) does not affect the analysis.

6. Injected DLL Characteristics

This section discusses the various characteristics identified in the in-
jected DLLs. The characteristics drawn from the set of injected DLLs
were contrasted with those of legitimate DLLs where appropriate. As
mentioned above, 33,160 cuckoo samples were generated for the study;
955 of the samples exhibited DLL injection behavior. It is plausible
that more samples than the 955 identified performed DLL injection, but
they did not in this instance due to the lack of a required resource (e.g.,
configuration file, Internet connection or installed software).

The analyzed data was split into two subsets. The first subset con-
tained all the injected DLLs and all the legitimate DLLs, 2,385 and
162,567 DLLs, respectively. The second subset contained the unique in-
jected and legitimate DLLs for a given memory image, 1,168 and 152,883
DLLs, respectively. Table 1 shows the dataset distribution.

Target Processes. Malware that injects DLLs must specify a tar-
get process to host the malicious code. Figure 2 shows the target pro-
cesses. In the dataset used in the study, some processes are more com-
mon than others. The most common processes targeted for injection
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Figure 2. Target processes.

were explorer.exe, svchost.exe and taskhost.exe, accounting for
more than 52% of injections. Each of these processes always runs on
a Windows system and presents a large and/or varied set of DLLs at
runtime. For example, explorer.exe had an average of 210 legitimate
DLLs loaded at one time, and several instances of svchost.exe and
taskhost.exe were typically in execution.

Number of Injections. A malware sample can choose to inject a
DLL into any running process. Injecting DLLs into multiple processes
can provide malware with greater survivability and versatility, but it also
increases the chances of detection. In the dataset, 955 malware samples
injected a DLL into a process. Figure 3 shows the number of injections
per malware sample. Sixty percent (573) of the 955 samples targeted
a single process while the remaining 40% (382) targeted two or more
processes.

Simultaneous Loads. When malware injects a DLL into several pro-
cesses, it often iterates through the active processes and injects the DLL
as it finds its target(s). For malware that loaded into multiple processes,
the load time extracted from -LDR_DATA_TABLE_ENTRY was exam-
ined to see how many DLLs had approximately the same load time. For
a given DLL within a memory image, the DLL load time was compared
against its load time in all the other processes containing the DLL. For
every load time within one second, the simultaneous load value of the
DLL was incremented by one (1). If the DLL appeared in multiple
processes, but did not share a load time, then a value of zero (0) was
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Figure 3. Number of injections per malware sample.

assigned. If a DLL existed only once within an entire memory image, a
value of minus one (-1) was assigned. Of the DLLs that existed in more
than one process (those with a value of zero (0) or greater), the number of
DLLs detected with at least one simultaneous load for injected DLLs was
73.3%. For legitimate DLLs, the corresponding percentage was 45.4%.
This shows that malicious DLLs tend to have approximately the same
load times whereas the load times of legitimate DLLs are more varied.

Load Position. The InLoadOrderModuleList is a doubly linked list of
_LDR_DATA _TABLE_ENTRY structures. The list is ordered based on
when a DLL was loaded into a process, with the executable occupying
the first position. The beginning entries are occupied by dynamically
linked DLLs named in the import address table. DLLs loaded at runtime
naturally appear at the end of the list. Some loaded DLLs are volatile
in that they are loaded and unloaded repeatedly during the lifetime of a
process while others are more stable, remaining loaded for longer periods
of time.

The load position was calculated for each DLL that existed in the
InLoadOrderModuleList. The average load position was calculated for
injected and legitimate DLLs. The average load position for all the
injected DLLs was 83.7. The average load position for legitimate DLLs
was 52.6. Note that the system ran for a short period of time, which may
have affected the reliability of the results. Depending on the number of
DLLs unloaded by a process, an injected DLL may appear closer to the
beginning of the list.
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Init Position. Similar to the InLoadOrderModuleList, the Inlnitial-
1zationOrderModuleList represents the order in which the DLLMain func-
tion of a DLL was executed. The average init position for all the injected
DLLs was 87.4. The average init position for legitimate DLLs was 51.3.
This result may also be affected by the short execution time of the anal-
ysis system.

Base Address. The base address is the virtual address in a pro-
cess where a DLL is loaded. The default base address for DLLs is
0x10000000. Since a process normally contains multiple DLLs and only
one DLL can occupy a given virtual address within a process, many
DLLs contain a .reloc section in the PE header that specifies how to
translate its offsets. In all, 48% of the unique injected DLLs were loaded
at the virtual address 0x10000000; this is in sharp contrast to legitimate
system DLLs, for which 99.99% of the DLLs were loaded at an address
other than 0x10000000.

Exported Function Count. The number of functions exported by
each DLL were extracted and used to calculate the means and modes
for the injected and legitimate DLLs. The injected DLLs exported con-
siderably fewer functions on the average, with a mode of 2 and a mean
of 13. Legitimate DLLs had a mode of 11 and a mean of 368.

Imported Function Count. The number of functions imported by
each DLL were extracted and used to calculate the means and modes
for the injected and legitimate DLLs. The mode of each type of DLL
was similar with injected DLLs and legitimate DLLs having modes of
213 and 198, respectively. The means for injected DLLs and legitimate
DLLs were 115 and 257, respectively.

Loaded from Temp. A common heuristic when looking for mal-
ware is searching binaries loaded from a temporary directory such as
% TEMPY% (C:\ Users\ UserName\ AppData\ Local\ Temp). In all, 20% of
the unique injected DLLs were loaded from a directory with temp in the
path. Nearly all of these were from %TEMP%, but a small number were
from the directories C:\temp or C:\ Windows\temp.

Load Paths. Figure 4 shows the most common load paths for injected
legitimate DLLs. In the case of legitimate DLLs, 97% were loaded from
C:\ Windows\ System32 or C:\ Windows\ System32\ en-us.
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Figure 4. Malicious load paths.

COM Server. The Component Object Model (COM) is an inter-
face standard used in the Windows operating system. It enables soft-
ware to call code hosted by other software components without in-depth
knowledge of its implementation. The calling component is the client
and the hosting component is the server. Malware writers sometimes
leverage the COM infrastructure to implement malicious code [13]. A
COM server is required to export at least two Windows API functions:
D11GetClassObject [9] and D1lCanUnloadNow [9]. If these two API
calls are seen in the exports of a DLL, then it is considered to be a
COM server. Only 5.2% of the unique injected DLLs were implemented
as COM servers.

COM Client. Windows binaries can call COM objects as clients. In
order to use COM objects, the binary must call the 0leInitialize [9] or
CoInitializeEx [9] functions. DLLs importing either of these functions
were considered to be COM clients. Only 2.1% of the unique injected
DLLs in the dataset were capable of calling COM objects.

7. Threats to Validity

Certain issues have to be accounted for in the generation process. The
analysis described above was restricted to a specific Windows operating
system version on a single architecture. While all versions of Windows
share the same general linking and loading procedures, the details of the
mechanism can change over time and across architectures. In the case
of “user-land” malware, the details of the mechanism may not impact
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the results for newer versions of the operating system, but the behav-
ior of malware that operates with elevated privileges may vary. This
may be countered in future work by performing the data gathering and
processing on multiple virtual machines with different operating system
versions. The manner in which the resulting data is stored may have to
be restructured to account for multiple DLL datasets for the different
circumstances under which malware was executed.

Another issue is that the behavior of malicious software (and non-
malicious software in the sandbox virtual machine) may vary based on
the availability and status of the environmental resources and settings.
Malware may choose not to act unless it determines that it can establish
a “real” connection to a command and control server across the public
Internet. It may choose not to inject DLLs into other processes un-
less it can detect the presence of email servers, active directory services
or network shares. This would impact the ability to gather adequate
DLL data, although it could be resolved by improving the fidelity and
capability of virtual sandbox environments.

No additional software was installed on the system beyond the base
installation. The legitimate DLLs referenced in this work are all Win-
dows system DLLs. The behavior of third-party application DLLs may
differ from that of the Windows system DLLs.

8. Conclusions

The research described in this chapter generated Windows 7 x86 mem-
ory images for 33,160 malware samples obtained from VirusShare. The
malware samples were executed in Cuckoo Sandbox, a sandboxed dy-
namic analysis environment. The memory images were processed using
Volatility to extract several artifacts associated with DLLs. DLLs that
had been injected into legitimate processes were identified. From among
the 33,160 cuckoo samples that were generated, 955 samples injected a
total of 2,385 (1,168 unique) DLLs into legitimate processes. There were
also 162,567 (152,883 unique) legitimate DLLs in the dataset. Analysis
of this data revealed several characteristics of malicious injected DLLs
and legitimate Windows DLLs. The characteristics contribute to the un-
derstanding of malicious DLLs and can be applied as heuristics to assist
in identifying malware in Windows memory images. Additionally, they
demonstrate the applicability of machine learning to the identification
of malicious DLLs in Windows memory images.

Future research will examine other forms of in-memory malware such
as processes and drivers. The research will employ a similar methodol-
ogy to identify characteristics that can assist in distinguishing malicious
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processes and drivers from their benign counterparts. The characteris-
tics presented in this work will be used to build a feature set for training
a machine learning classifier to identify malicious DLLs in memory. Fea-
ture selection algorithms will be applied to determine the most useful
features and the resulting feature set will be evaluated using a variety
of algorithms.
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