I. Thiele and B. Palsson, A protocol for generating a high-quality genome-scale metabolic reconstruction. Nature Protocols Available from, pp.93-121, 2010.

C. Henry, M. Dejongh, A. Best, P. Frybarger, B. Linsay et al., High-throughput generation, optimization and analysis of genome-scale metabolic models, Nature Biotechnology, vol.30, issue.9, pp.977-982, 2010.
DOI : 10.1038/nbt.1672

R. Agren, L. Liu, S. Shoaie, W. Vongsangnak, I. Nookaew et al., The RAVEN Toolbox and Its Use for Generating a Genome-scale Metabolic Model for Penicillium chrysogenum, e1002980. Available from, p.23555215
DOI : 10.1371/journal.pcbi.1002980.s014

D. Vallenet, E. Belda, A. Calteau, S. Cruveiller, S. Engelen et al., MicroScope--an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data, D1):D636?D647. Available from, p.23193269, 2013.
DOI : 10.1093/nar/gks1194

P. Karp, S. Paley, and P. Romero, The Pathway Tools software, Bioinformatics, vol.18, issue.Suppl 1, 2002.
DOI : 10.1093/bioinformatics/18.suppl_1.S225

N. Loira, A. Zhukova, and D. Sherman, Pantograph: A template-based method for genome-scale metabolic model reconstruction, Journal of Bioinformatics and Computational Biology, vol.13, issue.02, pp.1550006-25572717, 2015.
DOI : 10.1142/S0219720015500067

URL : https://hal.archives-ouvertes.fr/hal-01123733

T. Handorf, O. Ebenhöh, and R. Heinrich, Expanding Metabolic Networks: Scopes of Compounds, Robustness, and Evolution, Journal of Molecular Evolution, vol.268, issue.4, pp.498-512, 2005.
DOI : 10.1007/s00239-005-0027-1

S. Kumar, V. Dasika, M. Maranas, and C. , Optimization based automated curation of metabolic reconstructions, BMC Bioinformatics, vol.8, issue.1, pp.212-17584497, 2007.
DOI : 10.1186/1471-2105-8-212

I. Thiele, N. Vlassis, and R. Fleming, FASTGAPFILL: efficient gap filling in metabolic networks, Bioinformatics, vol.30, issue.17, pp.2529-2531, 2014.
DOI : 10.1093/bioinformatics/btu321

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147887

M. Benedict, M. Mundy, C. Henry, N. Chia, and N. Price, Likelihood-Based Gene Annotations for Gap Filling and Quality Assessment in Genome-Scale Metabolic Models, PLoS Computational Biology, vol.1, issue.10, p.25329157
DOI : 10.1371/journal.pcbi.1003882.s010

S. Mintz-oron, S. Meir, S. Malitsky, E. Ruppin, A. Aharoni et al., Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity, Proceedings of the National Academy of Sciences, vol.109, issue.1, pp.339-344, 2012.
DOI : 10.1073/pnas.1100358109

M. Herrgård, S. Fong, and B. Palsson, Identification of Genome-Scale Metabolic Network Models Using Experimentally Measured Flux Profiles, ):e72. Available from, p.16839195, 200607.

V. Kumar and C. Maranas, GrowMatch: An Automated Method for Reconciling In Silico/In Vivo Growth Predictions, ):e1000308. Available from, 200903.
DOI : 10.1371/journal.pcbi.1000308.s005

E. Vitkin and T. Shlomi, MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks, R111. Available from, p.23194418, 2012.
DOI : 10.1529/biophysj.106.093138

N. Christian, P. May, S. Kempa, T. Handorf, and O. Ebenhöh, An integrative approach towards completing genome-scale metabolic networks, Molecular BioSystems, vol.314, issue.Suppl 1, pp.1889-903, 2009.
DOI : 10.1039/b915913b

URL : http://hdl.handle.net/11858/00-001M-0000-0014-2605-6

J. Monk, J. Nogales, and B. Palsson, Optimizing genome-scale network reconstructions, Nature Biotechnology, vol.10, issue.5, pp.447-452, 2014.
DOI : 10.1093/bioinformatics/btt036

R. Caspi, T. Altman, R. Billington, K. Dreher, H. Foerster et al., The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway, D1):D459?D471. Available from, p.24225315, 2014.

D. Halter, J. Andres, F. Plewniak, J. Poulain, D. Silva et al., Arsenic hypertolerance in the protist Euglena mutabilis is mediated by specific transporters and functional integrity maintenance mechanisms Available from, Environ Microbiol. 2015, vol.17, issue.6, pp.1941-1949

D. Halter, F. Goulhen-chollet, S. Gallien, C. Casiot, J. Hamelin et al., In situ proteo-metabolomics reveals metabolite secretion by the acid mine drainage bio-indicator, Euglena mutabilis, The ISME Journal, vol.42, issue.7, p.2012
DOI : 10.1016/j.biochi.2008.07.013

URL : https://hal.archives-ouvertes.fr/hal-01254374

S. Dittami, T. Barbeyron, C. Boyen, J. Cambefort, G. Collet et al., Genome and metabolic network of " Candidatus Phaeomarinobacter ectocarpi " Ec32, a new candidate genus of Alphaproteobacteria frequently associated with brown algae Available from, Frontiers in Genetics, vol.5, issue.241, p.25120558, 2014.

S. Prigent, G. Collet, S. Dittami, L. Delage, F. Ethis-de-corny et al., (EctoGEM): a resource to study brown algal physiology and beyond, The Plant Journal, vol.4, issue.Suppl 4, pp.367-381, 2014.
DOI : 10.1111/tpj.12627

URL : https://hal.archives-ouvertes.fr/hal-01057153

S. Dittami, D. Eveillard, and T. Tonon, A metabolic approach to study algal-bacterial interactions in changing environments, Molecular Ecology, vol.32, issue.7, pp.1656-1660, 2014.
DOI : 10.1111/mec.12670

URL : https://hal.archives-ouvertes.fr/hal-00936195

J. Reed, T. Patel, K. Chen, A. Joyce, M. Applebee et al., Systems approach to refining genome annotation, Proceedings of the National Academy of Sciences, vol.103, issue.46, pp.17480-17484, 2006.
DOI : 10.1073/pnas.0603364103

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1859954

P. Pharkya, A. Burgard, and C. Maranas, OptStrain: A computational framework for redesign of microbial production systems, Genome Research, vol.14, issue.11, pp.2367-2376, 2004.
DOI : 10.1101/gr.2872004

P. Romero and P. Karp, Nutrient-related analysis of pathway/genome databases Available from, Pac Symp Biocomput, pp.471-482, 2001.

L. Cottret, V. Milreu, P. Acuña, V. Marchetti-spaccamela, A. et al., Enumerating Precursor Sets of Target Metabolites in a Metabolic Network, Algorithms in Bioinformatics Lecture Notes in Computer Science, vol.5251, pp.233-244, 2008.
DOI : 10.1007/978-3-540-87361-7_20

URL : https://hal.archives-ouvertes.fr/hal-00428200

T. Schaub and S. Thiele, Metabolic Network Expansion with Answer Set Programming, International Conference on Logic Programming/Joint International Conference and Symposium on Logic Programming
DOI : 10.1007/s10601-007-9031-y

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Orth, I. Thiele, and B. Palsson, What is flux balance analysis? Nat Biotech Available from, pp.245-248, 2010.
DOI : 10.1038/nbt.1614

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3108565

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, Answer Set Solving in Practice, Synthesis Lectures on Artificial Intelligence and Machine Learning, vol.6, issue.3, pp.1-238, 2012.
DOI : 10.2200/S00457ED1V01Y201211AIM019

S. Marashi and M. Tefagh, A mathematical approach to emergent properties of metabolic networks: Partial coupling relations, hyperarcs and flux ratios, Journal of Theoretical Biology, vol.355, pp.185-193, 2014.
DOI : 10.1016/j.jtbi.2014.04.011

L. De-figueiredo, S. Schuster, C. Kaleta, and D. Fell, Can sugars be produced from fatty acids? A test case for pathway analysis tools, Bioinformatics, vol.25, issue.1, pp.152-158, 2009.
DOI : 10.1093/bioinformatics/btn621

A. Feist, C. Henry, J. Reed, M. Krummenacker, A. Joyce et al., A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Available from, Mol Syst Biol, vol.3, p.17593909, 2007.

J. Orth, T. Conrad, N. J. Lerman, J. Nam, H. Feist et al., A comprehensive genome-scale reconstruction of Escherichia coli metabolism--2011, Molecular Systems Biology, vol.7, issue.1, pp.535-21988831, 2011.
DOI : 10.1038/msb.2009.92

J. Cock, S. Coelho, C. Brownlee, and A. Taylor, The Ectocarpus genome sequence: insights into brown algal biology and the evolutionary diversity of the eukaryotes, New Phytologist, vol.21, issue.1, pp.1-4, 2010.
DOI : 10.1111/j.1469-8137.2010.03454.x

N. Ye, X. Zhang, M. Miao, X. Fan, Y. Zheng et al., Saccharina genomes provide novel insight into kelp biology, Nature Communications, vol.25, pp.6986-25908475, 2015.
DOI : 10.1038/ncomms7986

URL : http://doi.org/10.1038/ncomms7986

D. Halter, C. Casiot, H. Heipieper, F. Plewniak, M. Marchal et al., Surface properties and intracellular speciation revealed an original adaptive mechanism to arsenic in the acid mine drainage bio-indicator Euglena mutabilis, Applied Microbiology and Biotechnology, vol.29, issue.12, pp.1735-1744, 2012.
DOI : 10.1007/s00253-011-3493-y

URL : https://hal.archives-ouvertes.fr/hal-00654727

L. Cottret, P. Milreu, V. Acuña, A. Marchetti-spaccamela, L. Stougie et al., Graph-Based Analysis of the Metabolic Exchanges between Two Co-Resident Intracellular Symbionts, Baumannia cicadellinicola and Sulcia muelleri, with Their Insect Host, Homalodisca coagulata Available from, PLOS Computational Biology, vol.6, issue.9, pp.1-13, 201009.

N. Loira, A. Zhukova, and D. Sherman, Pantograph: A template-based method for genome-scale metabolic model reconstruction, Journal of Bioinformatics and Computational Biology, vol.13, issue.02, pp.1550006-25572717, 2015.
DOI : 10.1142/S0219720015500067

URL : https://hal.archives-ouvertes.fr/hal-01123733

M. Gebser, B. Kaufmann, and T. Schaub, Conflict-driven answer set solving: From theory to practice, Artificial Intelligence, vol.187, issue.188, pp.52-89, 2012.
DOI : 10.1016/j.artint.2012.04.001

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub et al., Engineering an Incremental ASP Solver, Proceedings of the Twenty-fourth International Conference on Logic Programming (ICLP'08, pp.190-205, 2008.
DOI : 10.1016/j.artint.2004.04.004

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. Collet, D. Eveillard, M. Gebser, S. Prigent, T. Schaub et al., Extending the Metabolic Network of Ectocarpus??Siliculosus Using Answer Set Programming, Proceedings of the Twelfth International Conference on Logic Programming and Nonmonotonic Reasoning, pp.978-981
DOI : 10.1007/978-3-642-40564-8_25

URL : https://hal.archives-ouvertes.fr/hal-00853752

J. Steffensen, K. Dufault-thompson, and Y. Zhang, PSAMM: A Portable System for the Analysis of Metabolic Models, PLOS Computational Biology, vol.10, issue.80-, pp.1-29, 201602.
DOI : 10.1371/journal.pcbi.1004732.s011

J. Reed, T. Vo, C. Schilling, B. Palsson, . Gsm et al., An expanded genome-scale model of Escherichia coli K-12, R54. Available from, p.12952533, 2003.

H. Kenneth, . The, . Tomlab-optimization, . Environment, and . Matlab, Advanced Modeling and Optimization Available from: http://tomopt.com/docs/Tomlab-v1.0-Advanced-Modeling-and- Optimization-1999, pp.47-69, 1999.

L. Sterck, K. Billiau, T. Abeel, P. Rouzé, and Y. Van-de-peer, ORCAE: online resource for community annotation of eukaryotes. Nature methods Available from, pp.1041-23132114, 2012.

A. Ebrahim, J. Lerman, B. Palsson, and D. Hyduke, COBRApy: COnstraints-Based Reconstruction and Analysis for Python, BMC Systems Biology, vol.7, issue.1, pp.74-23927696, 2013.
DOI : 10.1093/bioinformatics/btr361

J. Förster, I. Famili, P. Fu, B. Palsson, and J. Nielsen, Genome-Scale Reconstruction of the Saccharomyces cerevisiae Metabolic Network, Genome Research, vol.13, issue.2, pp.244-253, 2003.
DOI : 10.1101/gr.234503

D. Buetow and B. Levedahl, Decline in the cellular content of RNA, protein and dry during the logarithmic growth of Euglena gracilis Available from: http://mic. microbiologyresearch.org/content, Microbiology, vol.2810, issue.4, pp.579-58400221287, 1099.

Y. Kott and A. Wachs, Amino acid composition of bulk protein of Euglena grown un water Applied Microbiology Available from, pp.292-294, 1964.

G. Constantopoulos and K. Bloch, Effect of Light Intensity on the Lipid Composition of Euglena gracilis Available from, Journal of Biological Chemistry, vol.242, issue.15, pp.3538-3542, 1967.

G. Constantopoulos, Lipid metabolism of manganese-deficient algae. I. Effect of manganese deficiency on the greening and the lipid composition of Euglena gracilis Z. Plant Physiology Available from, pp.76-80, 1970.