
HAL Id: hal-01452131
https://inria.hal.science/hal-01452131

Submitted on 1 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Framework for Developing Manufacturing Service
Capability Information Model

Yunsu Lee, Yun Peng

To cite this version:
Yunsu Lee, Yun Peng. A Framework for Developing Manufacturing Service Capability Information
Model. 20th Advances in Production Management Systems (APMS), Sep 2013, State College, PA,
United States. pp.325-333, �10.1007/978-3-642-41266-0_40�. �hal-01452131�

https://inria.hal.science/hal-01452131
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Framework for Developing Manufacturing Service

Capability Information Model

Yunsu Lee, Yun Peng

Department of Computer Science and Electrical Engineering

University of Maryland, Baltimore County

1000 Hilltop Circle, Baltimore, MD 21250

{yunsu.lee, ypeng}@umbc.edu

Abstract. Rapid formation and optimization of manufacturing production net-

works (MPN) requires manufacturing service capability (MSC) information of

each party be accessible, understandable, and processible by all others in the

network. However, at the present time, MSC information is typically encoded

according to local proprietary models, and thus is not interoperable. Related ex-

isting works are primarily for integration in “isolated automation” of pair-wise

or small size networks and thus are not adequate to deal with the high degree of

diversity, dynamics, and scales typical for a MPN. In this paper, we propose a

model development framework which enables to evolve a reference model for

MSC information based on the inputs from proprietary models. The developed

reference model can serve as a unified semantic basis supporting interoperabil-

ity of MSC information across these local proprietary models. Methodology for

resolving structural and other semantic conflicts between deferent models in

model development is also presented.

Keywords: manufacturing service capability, ontology development, pattern-

based ontology transformation, canonicalization

1 Introduction

Today, service capability information of manufacturers is typically represented ac-

cording to some models developed by individual enterprises or communities. These

local proprietary MSC information models are not interoperable because of their dif-

ferences in service category, capability structure and values. As a result, manufactur-

ers often have difficulty in quickly discover suppliers with required capabilities with-

out a significant level of human involvement. A MSC information reference model

that is semantically rich can help reconcile semantic difference among local proprie-

tary models and increase access and precision to capability information. However,

related existing works [1, 2, 3] are primarily for integration in isolated automation of

pair-wise or small size networks with less semantic diversity and thus are not ade-

quate to deal with the high degree of diversity, dynamics, and scales typical for a

manufacturing production networks (MPN).

In this paper, we propose a framework that helps to develop such a MSC infor-

mation reference model. This framework takes a transformational approach and is

centered on the ability to evolve a reference model based on the inputs from proprie-

tary models. And that ability is provisioned by the abilities to perform the semantic

gap analysis which identifies the semantic differences between the input models and

the reference model. The differences are then used to drive the evolution of the refer-

ence model. A challenge for semantic gap analysis in this framework is to deal with

the structural conflicts between the input from the local models and the reference

model. This is addressed by aligning the structural representations of the input with

the set of modeling conventions used in the reference models known as ontology de-

sign patterns (ODPs).

The rest of the paper is structured as follows. In the next section, we describe the

proposed model development framework. In Section 3, we discuss the possibility of

semantic loss after ontology transformation. And, finally we describe related works

before giving conclusion and future plans.

2 Model Development Framework

The proposed reference model development framework is outlined in Fig. 1. We as-

sume that each proprietary model uses its own syntax such as relational databases,

XML and XML schemas. In the first step (Transformation), these heterogeneous syn-

taxes are transformed into a common syntax (OWL in our framework). The output of

this step is an input into the following Canonicalization step. Another input to the

canonicalization step is the patterns library which contains ontology design patterns

(ODPs) from the reference model. The canonicalization step resolves the structural

conflict by aligning the structural representations of a proprietary model with a set of

modeling conventions used in the ODPs. The output of the canonicalization step is

called canonicalized proprietary model. In the next step (Semantic Gap Analysis), the

semantic differences between the canonicalized proprietary model and the reference

model are identified. The differences are then used to evolve the reference model. The

changes in the reference model are then verified for consistency in the Verifica-

tion/Reasoning step. Details of each of these steps and ODP are given next.

Fig. 1. The reference model evolution framework

2.1 Transformation

This step takes each proprietary model as input and converts them into common sy

tax of OWL. The output of this step is called a

cause the proprietary models take different conceptualization of the domain the result

of the transformation still remains to be

step can be largely automated when the proprietary model is

relational database and XML schema) as opposed to unstructured (e.g., text, HTML).

In our work, we assume that the proprietary models are in relational databases.

rently, there are many tools to support RDB

tigated D2RQ in particular

automatic transformation for the proposed framework

Fig. 2 below shows an example of the transformation from a relational database t

ble into OWL. The

s:PartLength. The LengthValue

s:PartLength_Value. The record, which has the value

owl:NamedIndividual named

an xsd:String value of the

2.2 Ontology Design pattern

An ODP is a reusable successful solution to a recurrent

written in an ontology language such as OWL [

small ontologies or ontology components with explicit documentation of design r

tionales and best reengineering practices.

has been gaining popularity recently because by reusing existing tested patterns as

building blocks a domain ontology can be constructed quickly with high quality and

less conceptualization divergence.

ontology design community [

ODPs as follows and show

cept of LengthCapability

• Definition 1: ODP is a

─ Sig is a non-empty set of Ontology Signature

─ BE is a non-empty set of binding expressions

• Definition 2: Ontology Signature is a 2

Transformation

proprietary model as input and converts them into common sy

. The output of this step is called a transformed proprietary model

cause the proprietary models take different conceptualization of the domain the result

of the transformation still remains to be structurally and semantically different.

can be largely automated when the proprietary model is well-structured (e.g.,

relational database and XML schema) as opposed to unstructured (e.g., text, HTML).

In our work, we assume that the proprietary models are in relational databases.

rently, there are many tools to support RDB-to-OWL transformations. We have inve

tigated D2RQ in particular and found that the D2RQ is capable of supporting the

automatic transformation for the proposed framework [14, 15].

below shows an example of the transformation from a relational database t

ble into OWL. The PartLength table is converted into an owl:Class

LengthValue attribute is converted into owl:DataProperty

. The record, which has the value 4 as its key, is converted into an

named s:PartLength_4. Its Value attribute value 6cm

value of the s:partLength_Value data property.

Fig. 2. RDB to OWL transformation example

Ontology Design patterns

An ODP is a reusable successful solution to a recurrent semantic modeling problem,

written in an ontology language such as OWL [8]. ODPs can be viewed as generic,

small ontologies or ontology components with explicit documentation of design r

tionales and best reengineering practices. Pattern-based approach for ontology design

has been gaining popularity recently because by reusing existing tested patterns as

ing blocks a domain ontology can be constructed quickly with high quality and

less conceptualization divergence. A large amount of ODPs have been proposed in the

ontology design community [9]. In this paper, we define a formal representation of

show in Fig. 3 a simple exemplary ODP that captures

LengthCapability with two DatatypeProperty, hasMin and hasMax.

ODP is a 2-tuple {Sig, BE}

empty set of Ontology Signature

empty set of binding expressions

Ontology Signature is a 2-tuple {E, X}

proprietary model as input and converts them into common syn-

proprietary model. Be-

cause the proprietary models take different conceptualization of the domain the result

semantically different. This

structured (e.g.,

relational database and XML schema) as opposed to unstructured (e.g., text, HTML).

In our work, we assume that the proprietary models are in relational databases. Cur-

transformations. We have inves-

and found that the D2RQ is capable of supporting the

below shows an example of the transformation from a relational database ta-

owl:Class named

owl:DataProperty named

as its key, is converted into an

 – 48cm is

modeling problem,

]. ODPs can be viewed as generic,

small ontologies or ontology components with explicit documentation of design ra-

based approach for ontology design

has been gaining popularity recently because by reusing existing tested patterns as

ing blocks a domain ontology can be constructed quickly with high quality and

A large amount of ODPs have been proposed in the

epresentation of

captures the con-

─ E is a non-empty set of entity and literal parameters

─ X is a set of axioms

• Definition 3: Bindin

─ P is a non-empty set of parameters in the Signature

─ C is a non-empty set of concepts and values giving a specific meaning to the

ODP signature

2.3 Canonicalization

The canonicalization is a methodology to resolve structural differences between two

different ontologies. The canonicalization aligns the structural representations of a

proprietary model with the set of

zation consists of semantic annotation

• Semantic Annotation

The semantic annotation is to identify correspondences between ODPs

ence model (called the target)

tary model (called the source)

ing terminological links between entities and literals in the

ODPs of the target by matching their meaning or semantics.

been proposed for determining semantic similarity between entities of two ontologies

[7, 8]. The similarity can be measured

bels of two ontology artifacts.

well. For instance, s:PartLength

logical links and their binding expression

are retrieved as shown in

of the target should be applied to which set of

Fig. 4. Correspondence between the transformed proprietary model and ODP

empty set of entity and literal parameters

X is a set of axioms

Binding Expressions is a 2-tuple {P, C}

empty set of parameters in the Signature

empty set of concepts and values giving a specific meaning to the

Fig. 3. Exemplary ODP

Canonicalization

is a methodology to resolve structural differences between two

different ontologies. The canonicalization aligns the structural representations of a

proprietary model with the set of ODPs used in the reference model. The c

emantic annotation and pattern-based ontology transformation.

Semantic Annotation

The semantic annotation is to identify correspondences between ODPs of the refe

ence model (called the target) and the ontology artifacts of the transformed

(called the source). The semantic annotation process starts with establis

ing terminological links between entities and literals in the source and those in the

by matching their meaning or semantics. Many approaches hav

been proposed for determining semantic similarity between entities of two ontologies

can be measured purely based on lexical information in the l

bels of two ontology artifacts. And, the structural information can be considered

s:PartLength is linked to p:LengthCapability. With these termin

their binding expressions, the ODPs that are related to these terms

retrieved as shown in Fig. 4. The resulting correspondence indicates which ODP

should be applied to which set of the source artifacts.

Correspondence between the transformed proprietary model and ODP

empty set of concepts and values giving a specific meaning to the

is a methodology to resolve structural differences between two

different ontologies. The canonicalization aligns the structural representations of a

The canonicali-

based ontology transformation.

of the refer-

the transformed proprie-

. The semantic annotation process starts with establish-

and those in the

Many approaches have

been proposed for determining semantic similarity between entities of two ontologies

purely based on lexical information in the la-

be considered as

With these termino-

he ODPs that are related to these terms

which ODP

Correspondence between the transformed proprietary model and ODP

• Pattern-based Ontology Transformation

The pattern-based ontology transformation first identifies sub-structures of the trans-

formed proprietary model that is semantically close to a target ODP. Then, the pat-

terns of the identified sub-structures are identified and they are called source ontology

patterns and represented by the formal representation given in Section 2.2. In the next

step, the pattern transformation rules are generated. A pattern transformation rule

specifies relations between parameters in the source and target ODPs. These relations

describe how the source ontology pattern should be transformed to the corresponding

target ontology pattern. For instance, let’s assume that the target ontology pattern has

two data properties including hasMin and hasMax and the source ontology pattern has

only one data property that represents the part length capability min and max values

with a single literal value such like 6cm – 48cm. To deal with this situation, a literal

value pattern is defined with the string regular expression, ([0-9]+)cm - ([0-9]+)cm.

The first group in the regular expression corresponds to the minimum part length

value and the second group corresponds to the maximum part length value. Fig. 5

below illustrates the pattern transformation rule for this situation.

Fig. 5. Pattern transformation rule generation

Then, the transformation rules are executed on the transformed proprietary model

and it is called pattern transformation. The pattern transformation is divided into two

sub-processes, pattern instances detection and transformation rule application. The

pattern instances detection process applies the source ontology pattern to find all pat-

tern instances in the transformed proprietary model using the SPARQL. The

SPARQL query generated from the source ontology pattern is shown in Fig. 6. It

retrieves all the pattern instances which conforms the source ontology pattern. A pat-

tern instance is a set of the transformed proprietary model’s entities and literals that

use the pattern.

PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
PREFIX s: <http://www.nist.gov/el/sid/msnm/PortalB.owl#>
SELECT distinct *
 WHERE {
 ?I1 rdf:type s:PartLength .
 ?I1 s:PartLength_value ?L1 . }

Fig. 6. SPARQL query generated from the source ontology pattern

The transformation rule application process applies the transformation rule on the

retrieved entities and literals in the transformed proprietary model. The output entities

and literals provide all the necessary elements to establish the set of axioms in the

target ontology pattern. The result of the pattern transformation is called

canonicalized proprietary model which is the final output. The canonicalized proprie-

tary model is expected to be structurally aligned with the structure of the reference

model.

2.4 Semantic Gap Analysis

The semantic gaps between the canonicalized proprietary model and the reference

model can be identified by mapping between those two different models. The map-

ping can be done manually and/or semi-automatically. Works in ontology matching in

the past decade are summarized and analyzed in [7]. These works have been largely

focused on achieving full ontology mapping or alignment, and, as indicated by the

authors, left several open issues, particularly the issues of matching across entity

types (i.e., to match across structural conflicts). However, in our framework, the

structural conflicts are already resolved through the canonicalization. Therefore, we

expect that those existing ontology matching algorithms would be suitable to this

mapping task. The identified semantic gaps such as newly found concepts, relations,

and axioms are documented and used for evolving the reference model.

2.5 Verification/Reasoning

Semantic inconsistency errors can often been seen when mapping and merging differ-

ent ontologies. Thus, ensuring that ontologies are consistent is an important part of

ontology development. Therefore, if the reference model is evolved based on the se-

mantic gap analysis, the reference model should be verified for guaranteeing the con-

sistency of the evolved model. The verification/reasoning step checks and verifies

consistency across the proprietary model, proprietary data and the reference model.

This includes translation checking, consistency checking, redundancy checking, etc. If

inconsistency is found in this step, the semantic gap that causes this inconsistency

should be re-analyzed and the changes should be reconsidered, and the verifica-

tion/reasoning and semantic gap analysis steps shall be executed in iterations until

there is no inconsistency.

3 Discussion

In this section, we discuss the possible semantic loss in canonicalization. The canoni-

calization is a type of ontology transformation. A key requirement for ontology trans-

formation is that while syntactical changes are being made to data structures, the se-

mantic meaning of that data should not be changed. Although all of the data trans-

formed from original structure to canonical form is syntactically correct, it may be

semantically incorrect and results in information loss. Thus, it is essential to consider

the semantic effects of syntactic changes to correctly perform canonicalization.

In [4], the authors sketched a set of possible ontology change operations and dis-

cussed the effects of these changes with respect to the instance data preservation. The

effects of the ontological changes can be classified as information-preserving, trans-

formable, and information loss. The ontological changes with information loss should

be very carefully handled while performing canonicalization. If one entity exists only

in the proprietary model and does not exist in the reference model, we need to inves-

tigate whether the entity is meaningful and should be considered as a new concept or

not. In the case of the former, the entity should be kept and additional information

should be annotated so that it would be listed up in the gap analysis step. And, in the

case of the latter, the entity should be excluded from the transformation rule and as a

result it would be removed after canonicalization.

4 Related Work

In this section, we briefly review existing works that are relevant to ontology con-

struction. The key ontology engineering activities in ontology construction are sum-

marized in [10], which also stressed the need for guidance on ontology reuse. Guid-

ance for building ontologies either from scratch or reusing other ontologies can be

found in [11]. After establishing the ontology, an important issue is that ontology

tends to change and evolve over time due to changes in the domain, changes in con-

ceptualization, or changes in the explicit specification [12]. Works in managing on-

tology change and evolution are well-summarized in [13].

Canonicalization has been studied in several works. [5, 6] provide workable meth-

ods and tools including key enablers. They provide well defined XML schema for the

pattern transformation definition (including pattern definitions and transformation

rules). For pattern instances detection engine, PATOMAT provides the functionality

to generate SPARQL query from the pattern transformation definitions and its pattern

transformation engine uses OPPL application interface for pattern transformation.

PATOMAT also has the TPEditor component which is an editor of source and target

ontology patterns and associated transformation rules.

5 Conclusion and Future Works

Our work is motivated by the need to improve precision and interoperability of manu-

facturing services models to enable sharing precise information models of suppliers’

manufacturing services in manufacturing production networks. In order to effectively

develop such manufacturing services models, we propose a model development

framework which enables a reference model to evolve based on the inputs from pro-

prietary or other existing standard models. The differences between the input models

and the reference model identified by the semantic gap analysis are used to evolve the

reference model. The reference model is then verified for ensuring its consistency.

In this framework, we propose a canonicalization methodology to align the struc-

tural representations of a proprietary model with the set of modeling conventions

(ODPs) used in the reference model. The benefit of canonicalization is the reduction

of the mapping complexity by reducing the number of entities and structural complex-

ity in the manufacturing service models and the number of mappings in semantic gap

analysis.

As of our future work, we are working on analyzing requirements for manufactur-

ing services capability to create a basic information model which will be a basis to

derive representation patterns for manufacturing services capability. Based on the

basic information model, we will create a library of representation patterns for the

manufacturing services capability. We will also be conducting more in depth re-

searches on core components of the model development framework. Finally, we will

develop processes and tools to create a reference model using representation patterns

for the manufacturing services capability.

References

1. W3C Semantic Web Activity, available at http://www.w3.org/2001/sw/

2. Kalfogloul, Y., Schorlemmer, M.: Ontology Mapping: The State Of The Art. The

Knowledge Engineering Review (2003)

3. Kim, J.: A Semantic Analysis of XML Schema Matching for B2B Systems Integra-

tion. PhD dissertation, Department of Computer Science and Electrical Engineer-

ing, University of Maryland, Baltimore County (2011)

4. Natalya, F.N., Michel K.: Ontology Evolution: Not the same as Schema Evolution.

In: Knowledge and Information Systems, 6(4), pp 428-440 (2004)

5. Svab-Zamazal, O., Svatek, V., Scharffe, F., David, J.: Detection and Transfor-

mation of Ontology Patterns. In: Knowledge Discovery, Knowledge Engineering

and Knowledge Management, Revised Selected Papers from IC3K. Springer CCIS

no.128, 2011, pp 210–223 (2009)

6. Svab-Zamazal, O., Svatek, V.: OWL Matching Patterns Backed by Naming and

Ontology Patterns. In: Znalosti, 10th Czecho-Slovak Knowledge Technology Con-

ference, Stara Lesna, Slovakia (2011)

7. Pavel, S., Jérôme, E.: Ontology matching: State of the art and future challenges.

IEEE Transactions on Knowledge and Data Engneering, X(X):1–20 (2012)

8. Gangemi, A.: Ontology Design Patterns for Semantic Web Content. International

Semantic Web Conference, Springer-Verlag Lecture Note in Computer Sciences

3729, pp 262–276 (2005)

9. Presutti, V. et al: NeOn Project Delivery - D2.5.1. A Library of Ontology Design

Patterns: reusable solutions for collaborative design of networked ontologies.

http://www.neon-project.org/web-content/images/Publications/neon_2008_d2.5.1.pdf

10. Jones, D., Bench-Capon, T., Visser, P.: Methodologies for Ontology Development.

In: Proc of the IT&KNOWS Conference of the 15th IFIP World Computer Con-

gress (1998)

11. Staab, S., Schnurr, H.P., Studer, R., Sure, Y.: Knowledge Processes and Ontolo-

gies. IEEE Intelligent Systems 16(1), 26–34 (2001)

12. Noy, N.F., Klein, M.: Ontology evolution: Not the same as schema evolution. Smi-

2002-0926, University of Stanford, Stanford Medical Informatics, USA (2002)

13. Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., Antoniou, G.: On-

tology change: classification and survey. The Knowledge Engineering Review

Journal, Vol. 23(2), pp 117-152 (2008)

14. Bizer, C.: D2R MAP: A Database to RDF Mapping Language. Proceedings of the

12th International World Wide Web Conference, Budapest, HUNGARY (2003)

15. Bizer, C., Seaborne, A.: D2RQ–treating non-RDF databases as virtual RDF graphs.

Proceedings of 3rd International Semantic Web Conference, Hiroshima, Japan,

S.A. McIlraith, D. Plexousakis, F. van Harmelen, Eds., Springer, Lecture Note in

Computer Sciences 3298 (2004)

