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ABSTRACT
We analyze linear convergence of an evolution strategy for con-
strained optimization with an augmented Lagrangian constraint han-
dling approach. We study the case of multiple active linear con-
straints and use a Markov chain approach�used to analyze ran-
domized optimization algorithms in the unconstrained case�to es-
tablish linear convergence under suf�cient conditions. More specif-
ically, we exhibit a class of functions on which a homogeneous
Markov chain (de�ned from the state variables of the algorithm)
exists and whose stability implies linear convergence. This class of
functions is de�ned such that the augmented Lagrangian, centered
in its value at the optimum and the associated Lagrange multipliers,
is positive homogeneous of degree 2, and includes convex quadratic
functions. Simulations of the Markov chain are conducted on lin-
early constrained sphere and ellipsoid functions to validate numer-
ically the stability of the constructed Markov chain.

Keywords
Augmented Lagrangian, constrained optimization, evolution strate-
gies, Markov chain, randomized optimization algorithms

1. INTRODUCTION
Randomized (or stochastic) optimization algorithms are robust

methods widely used in industry for solving continuous real-world
problems. Among them, the covariance matrix adaptation (CMA)
evolution strategy (ES) [12] is nowadays recognized as the state-
of-the art method. It exhibits linear convergence on wide classes
of functions when solving unconstrained optimization problems.
However, many practical problems come with constraints and the
question of how to handle them properly to particularly preserve
the linear convergence is an important one [2]. Recently, an aug-
mented Lagrangian approach to handle constraints within ES al-
gorithms was proposed with the motivation to design an algorithm
converging linearly [2]. The algorithm was analyzed theoretically
and suf�cient conditions for linear convergence, posed in terms of
stability conditions of an underlying Markov chain, were formu-
lated [3]. In those works, however, only the case of a single linear
constraint was considered.
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Markov chain theory [14] provides useful tools to analyze the
linear convergence of adaptive randomized optimization algorithms
and particularly evolution strategies. In a nutshell, for the case
of unconstrained optimization, on scaling-invariant functions�a
class of functions that includes all convex-quadratic functions�
for adaptive ESs satisfying certain invariance properties (typically
translation and scale-invariance), the stability analysis of an ap-
propriate Markov chain can lead to linear convergence proofs of
the original algorithm [7]. This general approach was exploited
in [5] to prove the linear convergence of the (1; �)-ES with self-
adaptation on the sphere function and in [6] to prove the linear
convergence of the (1 + 1)-ES with 1=5th success rule. This gen-
eral methodology to prove linear convergence in the case of uncon-
strained optimization was generalized to constrained optimization,
in the case where a single constraint is handled via an adaptive aug-
mented Lagrangian approach [3]. The underlying algorithm being
a (1 + 1)-ES.

In this work, we generalize the study in [3] to the case of multi-
ple linear inequality constraints. We analyze a (�=�w; �)-ES with
an augmented Lagrangian constraint handling approach in the case
of active constraints. The analyzed algorithm is an extension of the
one analyzed in [3], where we generalize the original update rule
for the penalty factor in [2] to the case of multiple constraints. We
construct a homogeneous Markov chain for problems such that the
corresponding augmented Lagrangian, centered at the optimum of
the problem and the corresponding Lagrange multipliers, is pos-
itive homogeneous of degree 2, given some invariance properties
are satis�ed by the algorithm. Then, we give suf�cient stability
conditions on the Markov chain such that the algorithm converges
to the optimum of the constrained problem as well as to the associ-
ated Lagrange multipliers. Finally, the stability of the constructed
Markov chain is investigated empirically.

The rest of this paper is organized as it follows: we present aug-
mented Lagrangian methods in Section 2 and give an overview on
how the Markov chain approach is used to prove linear conver-
gence in the unconstrained case in Section 3. We formally de�ne
the studied optimization problem, as well as the considered aug-
mented Lagrangian in Sections 4 and 5 respectively. In Section 6,
we present the studied algorithm and discuss its invariance prop-
erties. In Section 7, we present the constructed Markov chain and
deduce linear convergence given its stability. Finally, we present
our empirical results in Section 8 and conclude with a discussion in
Section 9.

Notations
The notations that are not explicitly de�ned in the paper are pre-
sented here. We denote R+ the set of positive real numbers, R+

>
the set of strictly positive real numbers, and N> the set of natural
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numbers without 0. x 2 Rn is a column vector, x| is its transpose,
and 0 2 Rn is the zero vector. kxk denotes the Euclidean norm of
x, [x]i its ith element, and [M]ij the element in the ith row and jth
column of matrix M. In�n 2 Rn�n denotes the identity matrix,
N (0; In�n) the multivariate standard normal distribution, and �
the equality in distribution. The symbol � is the function compo-
sition operator. The derivative with respect to x is denoted rx and
the expectation of a random variable X � � is denoted E� .

2. AUGMENTED LAGRANGIAN METHODS
Augmented Lagrangian methods are constraint handling approaches

that combine penalty function methods with the Karush-Kuhn-Tucker
(KKT) necessary conditions of optimality. They were �rst intro-
duced in [13, 16] to overcome the limitations of penalty function
methods�in particular quadratic penalty methods�which suffer
from ill-conditioning as the penalty parameters need to tend to in-
�nity in order to converge [15].

Similarly to penalty methods, augmented Lagrangian methods
transform the constrained problem into one or more unconstrained
problems where an augmented Lagrangian, consisting in a Lagrangian
part and a penalty function part, is optimized. The Lagrangian is a
function L : Rn � Rm ! R de�ned as

L(x; 
) = f(x) +
mX

i=1


igi(x) ; (1)

for a function f subject tom constraints gi(x) � 0. The vector 
 =
(
1; � � � ; 
m)| 2 Rm represents the Lagrange factors. An impor-
tant property ofL is the so-called KKT stationarity condition which
states that, given some regularity conditions (constraint quali�ca-
tions) are satis�ed, if x� 2 Rn is a local optimum of the constrained
problem, then there exists a vector 
� = (
�1; � � � ; 
�m)| 2
(R+)m of Lagrange multipliers 
�i, i = 1; � � � ;m, such that

rxL(x�; 
�) = rxf(x�) +
mX

i=1


�irgi(x�) = 0 ;

if we assume f and gi, i = 1; � � � ;m, are differentiable at x�.

Remark 1. Given the gradients rxf(x�) and rxgi(x�), i =
1; � � � ;m, exist, the �rst-order necessary conditions of optimality
(KKT conditions) ensure the existence of at least one vector 
� of
Lagrange multipliers. However, if the constraints satisfy the lin-
ear independence constraint quali�cation (LICQ), that is, the set
of constraint normals is linearly independent, the vector 
� of La-
grange multipliers is unique [15].

The Lagrangian L is combined to a penalty function, which is
a function of the constraints gi, to construct the augmented La-
grangian h. Examples of augmented Lagrangians are given in (9)
and (10), where ! = (!1; � � � ; !m)| 2 (R+

>)m is the vector of the
penalty factors !i. More generally, the augmented Lagrangian can
be de�ned as

h(x; 
; !) = f(x) +
mX

i=1

’(gi(x); 
i; !i) ; (2)

where ’ is chosen such that a local optimum x� of the constrained
problem is a stationary point of h, that is for all ! 2 (R+

>)m,

rxh(x�; 
�; !) = 0 ;

assuming the gradients at x� are de�ned. The augmented Lagrangian
h is minimized for given values of 
 and ! instead of the initial ob-
jective function f .

In adaptive augmented Lagrangian approaches, 
 is adapted to
approach the Lagrange multipliers and ! is adapted to guide the
search towards feasible solutions. A proper adaptation mechanism
for ! helps preventing ill-conditioning since, with an augmented
Lagrangian approach, the penalty factors !i do not need to tend to
in�nity to achieve convergence [15].

There exist in the literature some examples where augmented
Lagrangian approaches are used in the context of evolutionary al-
gorithms. In [17], the authors present a coevolutionary method for
constrained optimization with an augmented Lagrangian approach,
where two populations (one for the parameter vector and one for
Lagrange factors) are evolved in parallel, using an evolution strat-
egy with self-adaptation. The approach is tested on four non-linear
constrained problems, with a �xed value for the penalty parameter.

In [9], the authors present an augmented-Lagrangian-based ge-
netic algorithm for constrained optimization. Their algorithm re-
quires a local search procedure for improving the current best solu-
tion in order to converge to the optimal solution and to the associ-
ated Lagrange multipliers.

More recently, an augmented Lagrangian approach was com-
bined with a (1 + 1)-ES for the case of a single linear constraint
[2]. An update rule was presented for the penalty parameter and
the algorithm was observed to converge on the sphere function and
on a moderately ill-condition ellipsoid function, with one linear
constraint. This algorithm was analyzed in [3] using tools from
the Markov chain theory. The authors constructed a homogeneous
Markov chain and deduced linear convergence under the stability
of this Markov chain. In [4], the augmented Lagrangian constraint
handling mechanism in [2] is implemented for CMA-ES and a gen-
eral framework for building a general augmented Lagrangian based
randomized algorithm for constrained optimization in the case of
one constraint is presented.

3. MARKOV CHAIN ANALYSIS AND LIN-
EAR CONVERGENCE

Randomized or stochastic optimization algorithms are iterative
methods where�most often�the state of the algorithm is a Markov
chain. For a certain class of algorithms obeying proper invari-
ance properties, Markov chain theory can provide powerful tools to
prove the linear convergence of the algorithms [8, 7, 5]. We illus-
trate here on a simple case the general methodology to prove linear
convergence of an adaptive randomized algorithm using Markov
chain theory. We assume for the sake of simplicity the minimiza-
tion of the sphere function x 7! f(x) = 1

2 x|x with, without loss
of generality, the optimum in zero. We assume that the state of the
algorithm at iteration t is given by the current estimate Xt of the
optimum and a positive factor, the step-size �t. From this state, �
new candidate solutions are sampled according to

Xit+1 = Xt + �tUit+1; i = 1; : : : ; � ;

where Uit+1 are independent identically distributed (i.i.d.) standard
multivariate normal distributions (with mean zero and covariance
matrix identity). The state of the algorithm is then updated via two
deterministic update functions Gx and G� according to

Xt+1 = Gx((Xt; �t); & � Ut+1) ; (3)
�t+1 = G�(�t; & � Ut+1) ; (4)

where Ut+1 = [U1
t+1; � � � ;U�t+1] is the vector of i.i.d. random

vectors Uit+1 and

& = Ord(f(Xt + �tUit+1)i=1;��� ;�)



is the permutation that contains the indices of the candidate so-
lutions Xt + �tUit+1 ranked according to their f -value. That is,
the ordering is done using the operator Ord such that, given � real
numbers z1; � � � ; z�, & = Ord(z1; � � � ; z�) satis�es

z&(1) � � � � � z&(�) : (5)

In (3) and (4), the operator ‘*’ applies the permutation & to Ut+1
and

& � Ut+1 = [U&(1)
t+1 ; � � � ;U

&(�)
t+1 ] : (6)

It has been shown that if the update functions Gx and G� satisfy the
following conditions [7]:

(i) for all x; x0 2 Rn, for all � > 0, for all y 2 (Rn)�

Gx((x + x0; �); y) = Gx((x; �); y) + x0 ;

(ii) for all x 2 Rn, for all �; � > 0, for all y 2 (Rn)�

Gx((x; �); y) = �Gx

�� x
�
;
�
�

�
; y
�
;

(iii) for all �; � > 0, for all y 2 (Rn)�

G�(�; y) = �G�
��
�
; y
�
;

then the algorithm is translation-invariant and scale-invariant. As a
consequence, (Yt)t2N, with Yt = Xt

�t
, is a homogeneous Markov

chain that can be de�ned independently of (Xt; �t), given Y0 =
X0
�0

, as

Yt+1 =
Gx((Yt; 1); & � Ut+1)
G�(1; & � Ut+1)

;

where & = Ord(f(Yt + Uit+1)i=1;��� ;�) [7, Proposition 4.1] (this
result is true for the sphere function but more generally for a scaling-
invariant objective function). Let consider now the following de�-
nition of linear convergence:

De�nition 1. We say that a sequence (Xt)t2N of random vec-
tors Xt converges linearly almost surely (a.s.) to xopt if there exists
CR > 0 such that

lim
t!1

1
t

ln
kXt � xoptk
kX0 � xoptk

= �CR a.s.

The constant CR is called the convergence rate.

Using the property of the logarithm, the quantity 1
t ln kXtk

kX0k
(xopt =

0 here) can be expressed as a function of Yt according to

1
t

ln
kXtk
kX0k

=
1
t

t�1X

k=0

ln
kXk+1k
kXkk

=
1
t

t�1X

k=0

ln
kXk+1k
kXkk

�kG�(1; & �Uk+1)
�k+1

=
1
t

t�1X

k=0

ln
kYk+1k
kYkk

G�(1; & �Uk+1) ; (7)

where we have successively arti�cially introduced �k+1 = �kG�(1; &�
Uk+1) and then used that Yk = Xk=�k and Yk+1 = Xk+1=�k+1.
In (7), we have expressed the term whose limit we are interested in
as the empirical average of a function of a Markov chain. However,
we know from Markov chain theory that if some suf�cient stabil-
ity conditions�given for instance in Theorem 17:0:1 from [14]�
are satis�ed by (Yt)t2N, then a law of large numbers (LLN) for

Markov chains can be applied to the right-hand side of the previous
equation. Consequently,

lim
t!1

1
t

ln
kXtk
kX0k

= lim
t!1

1
t

t�1X

k=0

ln
kYk+1k
kYkk

G�(1; & �Uk+1)

=
Z

ln kyk�(dy)�
Z

ln kyk�(dy)

+
Z
E(ln(G�(1; & � Ut+1))jYt = y)�(dy)

| {z }
�CR

;

where � is the invariant probability measure of the Markov chain
(Yt)t2N. Hence, assuming that a law of large number holds for the
Markov chain (Yt)t2N, the algorithm described by the iterative se-
quence (Xt; �t)t2N will converge linearly at the rate expressed as
minus the expected log step-size change (where the expectation is
taken with respect to the invariant probability measure of (Yt)t2N).
This methodology to prove the linear convergence of adaptive al-
gorithms (including many evolution strategies) in the unconstrained
case holds on scaling-invariant functions (that include particularly
functions that write g � f , where g is a 1-D strictly increasing func-
tion and f is positively homogeneous, typically f can be a convex-
quadratic function). It provides the exact expression of the con-
vergence rate that equals the expected log step-size change with
respect to the stationary distribution of a Markov chain. This illus-
trates that Markov chains are central tools for the analysis of con-
vergence of adaptive randomized optimization algorithms. Remark
that the convergence rate can be easily simulated to obtain quantita-
tive estimates and dependencies with respect to internal parameters
of the algorithm or of the objective functions.

We see that there are two distinct steps for the analysis of the
linear convergence:

(i) Identify on which class of functions the algorithms we study
can exhibit a Markov chain whose stability will lead to the
linear convergence of the underlying algorithm (in the exam-
ple above, the Markov chain equals Yt = Xt=�t).

(ii) Prove the stability of the identi�ed Markov chain.

The second step is arguably the most complex one. So far, it has
been successfully achieved for the analysis of the linear conver-
gence of self-adaptive evolution strategies [5] and for the (1+1)-ES
with one-�fth success rule [6] in the unconstrained case. The main
tools to prove the stability rely on Foster-Lyapunov drift conditions
[14]. In this paper, we will focus on the �rst step. Particularly, the
Markov chain for step-size adaptive randomized search optimizing
scaling-invariant functions (i.e. unconstrained optimization) was
identi�ed in [7]. In addition, in the constrained case, the Markov
chain has been identi�ed for the (1 + 1)-ES with an augmented
Lagrangian constraint handling in the case of one linear inequality
constraint [3]. We consider here the extension to more than one
constraint and a more general algorithm framework.

4. OPTIMIZATION PROBLEM
We consider throughout this work the problem of minimizing a

function f subject to m linear inequality constraints gi(x) � 0,
i = 1; � � � ;m. Formally, this writes

min
x
f(x)

subject to gi(x) � 0; i = 1; � � � ;m ; (8)

where f : Rn ! R, gi : Rn ! R, and gi(x) = bi|x + ci,
bi 2 Rn, ci 2 R.



We assume this problem to have a unique global optimum xopt.
We also assume the constraints to be active at xopt, that is, gi(xopt) =
0, i = 1; � � � ;m. This constitutes the most dif�cult case. Indeed,
if the constraint is not active, when close enough to the optimum,
the algorithm will typically not see the constraint such that it will
behave as in the unconstrained case. In terms of theoretical analy-
sis, the unconstrained case�for a general class of step-size adap-
tive algorithms�is well understood in the case of scaling-invariant
functions [7]. Additionally, we assume that the gradients at xopt,
rxf(xopt) and rxgi(xopt), i = 1; � � � ;m, are de�ned and that the
constraints satisfy the linear independence constraint quali�cation
(LICQ) [15] at xopt. We denote 
opt the (unique) vector of La-
grange multipliers associated to xopt.

5. CONSIDERED AUGMENTED LAGRAN-
GIAN

A practical augmented Lagrangian for the optimization problem
in (8) is given in the following equation

h(x; 
; !) = f(x)

+
mX

i=1

(

igi(x) + !i

2 gi(x)2 if 
i + !igi(x) � 0
� 
i2

2!i otherwise
| {z }

’1(gi(x);
i;!i)

: (9)

The use of a different penalty factor for each constraint is motivated
by the fact that the penalization should depend on the constraint
violation�which might be different for different constraints. The
quality of a solution x is evaluated by adding f(x) and either (i)

igi(x) + !i

2 gi(x)2 if gi(x) is larger than � 
i

!i or (ii) � 
i2

2!i other-
wise, for each constraint function gi.

The augmented Lagrangian in (9) is constructed such that (i) the
�tness function remains unchanged when far in the feasible domain
and (ii) h is �smooth� in that it is differentiable with respect to gi.
Therefore, (9) is the recommended augmented Lagrangian in prac-
tice. For the analysis, however, we consider a simpler augmented
Lagrangian (equation below) so that we can construct a Markov
chain.

h(x; 
; !) = f(x) +
mX

i=1


igi(x) +
!i

2
gi(x)2

| {z }
’2(gi(x);
i;!i)

: (10)

The difference is that in the previous formulation the penalization is
a constant and hence inconsequential for gi(x) < �
i=!i. Since
we focus in our study on problems where the constraints are ac-
tive at the optimum, the augmented Lagrangians in (9) and (10) are
equivalent in the vicinity of xopt, as illustrated in Figure 1 for one
constraint. Inactive constraints are covered in that the analysis re-
mains valid when these constraints are removed, in which case we
recover the original equation (9) up to adding a constant to the f -
value. Therefore, conducting the analysis with (10) gives insight
into how a practical algorithm using (9) would perform close to the
optimum.

6. ALGORITHM
In this section, we present a general ES (Algorithm 1) with comma-

selection and weighted recombination (denoted (�=�w; �)-ES) for
constrained optimization, where the constraints are handled using
an augmented Lagrangian approach.

First, � i.i.d. vectors Uit+1 are sampled in Line 3 of Algorithm 1
according to a normal distribution of mean 0 and covariance matrix
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Figure 1: Left: ’j(gi(x); 
i; !i) for j = 1 (blue) and j = 2
(red), as a function of gi. Right: Augmented Lagrangians, f(x) +Pm
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i; !i), for j = 1 (blue) and j = 2 (red), in n = 1

with m = 1. f(x) = 1
2x

2, g1(x) = x� 1, and xopt = 1.

the identity. They are used to create � candidate solutions Xit+1
according to

Xit+1 = Xt + �tUit+1 ; (11)

where Xt is the current estimate of the optimum and �t is the step-
size. The candidate solutions are then ranked according to their
�tness, determined by their h-value. This is done in Line 4 with
the operator Ord de�ned in (5), where & is the permutation that
contains the indices of the ordered candidate solutions.

Later on, we will make explicit the dependency of & on the objec-
tive function, the current solution, and the current step-size, where
needed (this would read &h(:;
t;!t)

(Xt;�t)
here). The solution Xt+1 at

the next iteration is computed by recombining the � best candi-
date solutions�or parents�in a weighted sum according to Line 5,
where wi, i = 1; � � � ; �, are the weights associated to the parents
and the operator ‘*’ applies the permutation & to the vector Ut+1 of
the sampled vectors Uit+1 as de�ned in (6).

The step-size is adapted in Line 6 using a general update function
G� . For the sake of simplicity, we consider that G� is a function
of the current step-size �t and the ranked vector & � Ut+1 of the
sampled vectors Uit+1.

The Lagrange factors are adapted in Line 7. As a result of this
update rule, a Lagrange factor 
it is increased if gi(Xt+1) is posi-
tive and decreased otherwise. A damping factor d
 is used to atten-
uate the change in the value of 
it .

Each penalty factor !it is adapted according to Line 8. This up-
date is a generalization to the case of many constraints of the orig-
inal update proposed in [2] for the case of a single constraint. A
penalty factor !it is increased in two cases: the �rst one is given by
the �rst inequality in Line 8 and corresponds to the case where (i)
the change in h-value due to changes in 
it and !it is smaller than
the change in h-value due to the change in Xt. Indeed

!itgi(Xt+1)2 � jh(Xt+1; 
t+�i
; !t+�i!)�h(Xt+1; 
t; !t)j ;

where �i
 = (0; � � � ;�
i; � � � ; 0)| and �i! = (0; � � � ;�!i;
� � � ; 0)|. By increasing the penalization, we prevent premature
stagnation [2]. The parameter !it is also increased if (ii) the change
in the corresponding constraint value jgi(Xt+1)�gi(Xt)j is signif-
icantly smaller than jgi(Xt)j (second inequality in Line 8). In this
case, increasing the penalization allows approaching the constraint
boundary (gi(x) = 0) more quickly. However, increasing !it in-
creases the ill-conditioning of the problem at hand, therefore, in all
other cases, !it is decreased (second case in Line 8). Similarly to
the update of the Lagrange factors, we use a damping factor d! to
moderate the changes in !it.

Algorithm 1 is a randomized adaptive algorithm that can be de-
�ned in an abstract manner as follows: given the state variables
(Xt; �t; 
t; !t) at iteration t, a transition functionF (f;fgigi=1;��� ;m),
and the vector Ut+1 = [U1

t+1; � � � ;U�t+1] of i.i.d. normal vectors



Algorithm 1 (�=�w; �)-ES with Augmented Lagrangian Con-
straint Handling

0 given n 2 N>; �; k1; k2; d
 ; d! 2 R+
>; �; � 2 N>; 0 � wi < 1;

�X

i=1

wi = 1

1 initialize X0 2 Rn; �0 2 R+
>; 
0 2 Rm; !0 2 (R+

>)m; t = 0
2 while stopping criterion not met
3 Uit+1 = N (0; In�n); i = 1; � � � ; �
4 & = Ord(h(Xt + �tUit+1; 
t; !t)i=1;��� ;�)

5 Xt+1 = Xt + �t
�X

i=1

wi[& � Ut+1]i;Ut+1 = [U1
t+1; � � � ;U

�
t+1]

6 �t+1 = G�(�t; & � Ut+1)

7 
it+1 = 
it +
!it
d

gi(Xt+1); i = 1; � � � ;m

8 !it+1 =

8
>>><

>>>:

!it�1=(4d!) if !itgi(Xt+1)2 < k1�
jh(Xt+1;
t;!t)�h(Xt;
t;!t)j

n
or k2jgi(Xt+1)� gi(Xt)j < jgi(Xt)j

!it��1=d! otherwise; i = 1; � � � ;m
9 t = t+ 1

Uit+1, compute the state at iteration t+ 1 according to

(Xt+1; �t+1; 
t+1; !t+1) =

F (f;fgigi=1;��� ;m)((Xt; �t; 
t; !t);Ut+1);

where the superscript indicates the objective function to minimize,
f , and the constraint functions, gi. The deterministic transition
function F (f;fgigi=1;��� ;m) is de�ned by the following general up-
date rules for Xt, �t, 
t, and !t:

Xt+1 = Gx((Xt; �t); & � Ut+1) ; (12)
�t+1 = G�(�t; & � Ut+1) ; (13)


it+1 = Hgi
 (
it ; !
i
t;Xt+1); i = 1; � � � ;m ; (14)

!it+1 = H(f;gi)
! (!it; 


i
t ;Xt;Xt+1); i = 1; � � � ;m ; (15)

where & , Gx, H
 , and H! are given in Lines 4, 5, 7, and 8 of
Algorithm 1 respectively. These notations are particularly useful
for de�ning the notions of translation and scale-invariance in the
next subsection. They also make the connection between the con-
structed homogeneous Markov chain and the original algorithm
clearer.

Comparing (12), (13), (14), and (15) to (3) and (4), it is easy
to see that Algorithm 1 is built by taking an adaptive algorithm for
unconstrained optimization and changing its objective function to
an adaptive one�the augmented Lagrangian�where the parame-
ters of the augmented Lagrangian are additionally adapted every
iteration. This idea was already put forward in [4] for the case of
a single constraint, and we generalize it here to the case of m con-
straints.

6.1 Invariance
Invariance with respect to transformations of the search space is

a central property in randomized adaptive algorithms. In the uncon-
strained case, it is exploited to demonstrate linear convergence [7,
6]. In this subsection, we discuss translation-invariance and scale-
invariance of Algorithm 1. We �rst recall the de�nition of a group
homomorphism and introduce some notations.

De�nition 2. Let (G1; :) and (G2; �) be two groups. A function
� : G1 ! G2 is a group homomorphism if for all x; y 2 G1,
�(x:y) = �(x) � �(y).

We denote S(
) the set of all bijective transformations from a
set 
 to itself and Homo((Rn;+); (S(
); �)) (respectively
Homo((R+

>; :); (S(
); �))) the set of group homomorphisms from
(Rn;+) (respectively from (R+

>; :)) to (S(
); �).
Translation-invariance informally translates the non-sensitivity

of an algorithm with respect to the choice of its initial point, that
is the algorithm will exhibit the same behavior when optimizing
x 7! f(x) or x 7! f(x � x0) for any x0. More formally, an algo-
rithm is translation-invariant if we can �nd a state-space transfor-
mation such that optimizing x 7! f(x) or x 7! f(x � x0) is the
same up to the state-space transformation. In the next de�nition,
which is a generalization to the constrained case of the de�nition
given in [7], we ask that the set of state-space transformations is
given via a group homomorphism from the group acting on the
function to transform the functions, that is (Rn;+), to the group
of bijective state-space transformations. Indeed this group homo-
morphism naturally emerges when attempting to prove invariance.
More formally, we have the following de�nition of translation-
invariance.

De�nition 3. A randomized adaptive algorithm with transition
function F (f;fgigi=1;��� ;m) : 
 � U� ! 
, where f is the ob-
jective function to minimize and gi are the constraint functions, is
translation-invariant if there exists a group homomorphism � 2
Homo((Rn;+); (S(
); �)) such that for any objective function f ,
for any constraint gi, for any x0 2 Rn, for any state s 2 
, and for
any u 2 U�,

F(f(x);fgi(x)gi=1;��� ;m)(s;u)

= �(�x0)
�
F(f(x�x0);fgi(x�x0)gi=1;��� ;m)(�(x0)(s);u)

�
:

Similarly for scale-invariance, the set of state-space transforma-
tions comes from a group homomorphism between the group where
the scaling factors acting to transform the objective functions are
taken from, that is the group (R+

>; :) and the group of bijective
state-space transformations.

De�nition 4. A randomized adaptive algorithm with transition
functionF (f;fgigi=1;��� ;m) : 
�U� ! 
, where f is the objective
function to minimize and gi are the constraint functions, is scale-
invariant if there exists a group homomorphism � 2
Homo((R+

>; :); (S(
); �)) such that for any objective function f ,
for any constraint gi, for any � > 0, for any state s 2 
, and for
any u 2 U�,

F(f(x);fgi(x)gi=1;��� ;m)(s;u) =

�(1=�)
�
F(f(�x);fgi(�x)gi=1;��� ;m)(�(�)(s);u)

�
:

The next proposition states translation-invariance of Algorithm 1.

PROPOSITION 1. Algorithm 1 is translation-invariant and the
associated group homomorphism � is given by

�(x0)(x; �; 
; !) = (x + x0; �; 
; !) ; (16)

for all x0; x 2 Rn, for all � 2 R, and for all 
; ! 2 Rm.

The proof of this proposition is given in Appendix A.1. In the
next proposition we state the scale-invariance of Algorithm 1 under
scale-invariance of the transition function G� .



PROPOSITION 2. If the update function G� of the step-size sat-
is�es the following condition

G�(�t; & � Ut+1) = �G�(�t=�; & � Ut+1) ; (17)

for all � > 0, then Algorithm 1 is scale-invariant and the associ-
ated group homomorphism � is de�ned as

�(�)(x; �; 
; !) = (x=�; �=�; 
; !) ; (18)

for all � > 0, for all x 2 Rn, for all � 2 R, and for all 
; ! 2 Rm.

The proof of the proposition is given in Appendix A.2.
In the next section, we illustrate how translation and scale-invariance

induce the existence of a homogeneous Markov chain whose stabil-
ity implies linear convergence.

7. ANALYSIS
In this section, we demonstrate the existence of an underlying

homogeneous Markov chain to Algorithm 1, given the augmented
Lagrangian in (10) satis�es a particular condition. To construct the
Markov chain, we exploit invariance properties of Algorithm 1, as
well as the updates of the Lagrange factors and the penalty factors.

As stated in Section 4, we assume that the optimization prob-
lem admits a unique global optimum xopt and that the constraints
gi, i = 1; � � � ;m, satisfy the LICQ at xopt, hence that the vector

opt of Lagrange multipliers is unique. Once we have the Markov
chain, we show how its stability leads to linear convergence of (i)
the current solution Xt towards the optimum xopt, (ii) the vector
of Lagrange factors 
t towards the vector of Lagrange multipliers

opt, and (iii) the step-size �t towards 0.

7.1 Homogeneous Markov Chain
We start by recalling the de�nition of positive homogeneity.

De�nition 5. [De�nition 4 from [3]] A function p : X ! Y is
positive homogeneous of degree k > 0 with respect to x� 2 X if
for all � > 0 and for all x 2 X ,

p(x� + �x) = �kp(x� + x) : (19)

Example 1. Our linear constraint functions, gi(x) = b|
i x + ci,

are positive homogeneous of degree 1 with respect to any x� 2 Rn
that satis�es gi(x�) = 0. Indeed,

gi(x� + �x) = b|
i (x� + �x) + ci = �(b|

i x + ci) + �b|
i x�

= �gi(x� + x) ; for all � > 0: (20)

The following theorem gives suf�cient conditions under which
the sequence (�t)t2N, with �t = (Yt;�t; !t), is a homogeneous
Markov chain, where the random variables Yt and �t are de�ned
in (21) below.

THEOREM 1. Consider the (�=�w; �)-ES with augmented La-
grangian constraint handling minimizing the augmented Lagrangian
h in (10), such that the step-size update function G� satis�es the
condition in (17). Let (Xt; �t; 
t; !t)t2N be the Markov chain as-
sociated to this ES and let (Ut)t2N be a sequence of i.i.d. normal
vectors. Let �x 2 Rn such that gi(�x) = 0 for all i = 1; : : : ;m, and
let �
 2 Rm. Let

Yt =
Xt � �x
�t

and �t =

t � �

�t

: (21)

Then, if the function Dh�x;�
;! : Rn+m ! R de�ned as

Dh�x;�
;!(x; 
) = h(x; 
; !)� h(�x; �
; !) (22)

is positive homogeneous of degree 2 with respect to [�x; �
], then the
sequence (�t)t2N, where �t = (Yt;�t; !t), is a homogeneous
Markov chain that can be de�ned independently of (Xt; �t; 
t; !t)
as Y0 = (X0 � �x)=�0, �0 = (
0 � �
)=�0 and for all t

Yt+1 = Gx((Yt; 1); & � Ut+1)=G�(1; & � Ut+1) ; (23)

�it+1 = Hgi(:+�x)

 (�it; !

i
t; ~Yt+1)=G�(1; & � Ut+1) ; (24)

!it+1 = H(f(:+�x);gi(:+�x))
! (!it;�

i
t + �
i; ~Yt+1) ; (25)

with

& = Ord(h(Yt + Uit+1 + �x;�t + �
; !t)i=1;��� ;�) ; (26)
~Yt+1 = Gx((Yt; 1); & � Ut+1) ; (27)

where the Ord operator extracts the permutation of ordered candi-
date solutions (see (5)).

The proof of Theorem 1 is given in Appendix A.3. The key idea in
the proof is that when Dh�x;�
;!t is positive homogeneous of degree
2 with respect to [�x; �
], the same permutation & is obtained when
ranking candidate solutions Xt+�tUit+1 on h(:; 
t; !t) than when
ranking candidate solutions Yt+Uit+1 on h(:+�x;�t+ �
; !t), i.e.,

&h(:;
t;!t)
(Xt;�t)

= &h(:+�x;�t+�
;!t)
(Yt;1) = & :

Scale-invariance of Algorithm 1, induced by the property of G�
in (17), is also used explicitly in the proof while translation-invariance
is used implicitly.

Theorem 1 holds for any �x 2 Rn such that gi(�x) = 0, for all
i 2 f1; � � � ;mg, and for any �
 2 Rm. In particular, it holds for
the optimum xopt of our constrained problem and the associated
vector 
opt of Lagrange multipliers.

The following corollary states that on convex quadratic func-
tions, (�t)t2N (de�ned in Theorem 1) is a homogeneous Markov
chain for �x = xopt and �
 = 
opt.

COROLLARY 1. Let (Xt; �t; 
t; !t)t2N be the Markov chain as-
sociated to the (�=�w; �)-ES in 1 optimizing the augmented La-
grangian h in (10), with f convex quadratic de�ned as

f(x) =
1
2

xTHx ; (28)

where H 2 Rn�n is a symmetric positive-de�nite matrix. Let Yt =
Xt�xopt
�t

and �t = 
t�
opt
�t

, where xopt is the optimum of the con-
strained problem and 
opt is the vector of the associated Lagrange
multipliers. Then (�t)t2N, with �t = (Yt;�t; !t), is a homoge-
neous Markov chain de�ned independently of (Xt; �t; 
t; !t) as in
(23), (24), (25), (26), and (27) by taking �x = xopt and �
 = 
opt.

We prove the corollary by showing that the functionDhxopt;
opt;!
de�ned in (22) is positive homogeneous of degree 2 with respect to
[xopt; 
opt] for f(x) = 1

2 x|Hx. For the proof (see Appendix A.4),
we use the following elements:

� The de�nitions of the gradients of f and gi, rxf(y) = y|H
andrxgi(y) = b|

i , respectively.

� The KKT stationarity condition at the optimum xopt

rxf(xopt) +
mX

i=1


irxgi(xopt) = 0 : (29)



Remark 2. For a convex quadratic objective function f and lin-
ear constraints gi, i = 1; � � � ;m, KKT conditions are suf�cient
conditions for optimality. That is, a point that satis�es KKT condi-
tions is also an optimum of the constrained problem (see [15, The-
orem 16:4]). The optimization problem we consider is unimodal,
therefore xopt is the only point satisfying the KKT conditions.

7.2 Suf�cient Conditions for Linear Conver-
gence

In the sequel, we investigate linear convergence of Algorithm 1.
There exist many de�nitions�not always equivalent�of linear con-
vergence. We consider here the almost sure linear convergence
whose de�nition is given in De�nition 1. We will also brie�y dis-
cuss another de�nition of linear convergence that considers the ex-
pected log-progress ln kXt+1�xoptk

kXt�xoptk
.

We start by giving the de�nitions of an invariant probability mea-
sure and positivity [14]. We consider a Markov chain (Xt)t2N that
takes its values in a set X � Rn equipped with its Borel �-algebra
B(X ). The transition probabilities are given by the transition prob-
ability kernel P such that for x 2 X and B 2 B(X )

P (x; B) = Pr(Xt+1 2 B j Xt = x) :

De�nition 6. Let � be a probability measure on X and let Xt �
�. We say that � is invariant if

�(B) =
Z

X
�(dx)P (x; B) :

We say that a Markov chain is positive if there exists an invariant
probability measure for this Markov chain.

Harris-recurrence [14] is related to the notion of irreducibility.
Informally, a Markov chain is’-irreducible if there exists a nonzero
measure ’ on X such that all ’-positive sets (that is, sets B 2
B(X ) such that ’(B) > 0) are reachable from anywhere in X . In
such a case, there exists a maximal irreducibility measure  that
dominates other irreducibility measures [14].

De�nition 7. Let (Xt)t2N be a  -irreducible Markov chain. A
measurable set B 2 B(X ) is Harris-recurrent if

Pr(
X

t2N>

1fXt2Bg =1 j X0 = x) = 1 ;

for all x 2 B. By extension, we say that (Xt)t2N is Harris-recurrent
if all  -positive sets are Harris-recurrent.

We can now recall Theorem 17:0:1 from [14] that gives suf�cient
conditions for the application of a LLN for Markov chains.

THEOREM 2 (THEOREM 17:0:1 FROM [14]). Let Z be a pos-
itive Harris-recurrent chain with invariant probability �. Then the
LLN holds for any function q such that �(jqj) =

R
jq(z)j�(dz)

< 1, that is, for any initial state Z0, limt!1
1
t

Pt�1
k=0 q(Zk) =

�(q) almost surely.

Consider now Algorithm 1 minimizing the augmented Lagrangian
h in (10) corresponding to the optimization problem in (8), such
that the function Dhxopt;
opt;!t de�ned in (22) is positive homoge-
neous of degree 2 with respect to [xopt; 
opt]. By virtue of Theo-
rem 1, (�t)t2N is a homogeneous Markov chain. The following
theorem gives suf�cient conditions under which Algorithm 1 con-
verges to the optimum xopt of the constrained problem, as well as
to the corresponding Lagrange multiplier 
opt.

THEOREM 3. Let (Xt; �t; 
t; !t)t2N be the Markov chain as-
sociated to Algorithm 1 optimizing the augmented Lagrangian h
such that the function Dhxopt;
opt;!t de�ned in (22) is positive ho-
mogeneous of degree 2 with respect to [xopt; 
opt], where xopt is
the optimum of the constrained problem (8) and 
opt is the cor-
responding Lagrange multiplier. Let (�t)t2N be the Markov chain
de�ned in Theorem 1 and assume that it is positive Harris-recurrent
with invariant probability measure �, that E�(j ln k[�]1kj) < 1,
E�(j ln k[�]2kj) <1, and E�(R(�)) <1, where

R(�) = E
�

ln(G�(1; & � Ut+1))j�t = �
�
: (30)

Then for all X0, for all �0, for all 
0, and for all !0,

lim
t!1

1
t

ln
kXt � xoptk
kX0 � xoptk

= lim
t!1

1
t

ln
k
t � 
optk
k
0 � 
optk

= lim
t!1

1
t

ln
�t
�0

= �CR a.s. ;

where

�CR =
Z
R(�)�(d�) :

The proof idea is similar to the one discussed in Section 3 for the
unconstrained case, where the quantities 1

t ln kXt�xoptk
kX0�xoptk

,
1
t ln k
t�
optk

k
0�
optk
, and 1

t ln �t
�0

are expressed as a function of the Markov
chain �t. The detailed proof of Theorem 1 is given in Appendix A.5.

While in the previous theorem we have presented suf�cient con-
ditions on the Markov chain �t for the almost sure linear conver-
gence of the algorithm, other suf�cient conditions can allow to de-
rive the geometric convergence of the expected log-progress. Typ-
ically, assuming we have proven a so-called geometric drift for the
chain �t, plus some assumptions ensuring that the conditional log-
progress is dominated by the drift function (see for instance [7,
Theorem 5:4]), then
X

t

rtjE�0 ln
kXt+1 � xoptk
kXt � xoptk

� (�CR)j � RV (�0) ; (31)

where r > 1, R is a positive constant and V � 1 is the drift
function. Equation (31) also holds when replacing ln kXt+1�xoptk

kXt�xoptk

by ln k
t+1�
optk
k
t�
optk

and ln �t+1
�t

.

8. EMPIRICAL RESULTS
We describe here our experimental setting and discuss the ob-

tained results.

8.1 Step-Size Adaptation Mechanism
We test Algorithm 1 with cumulative step-size adaptation (CSA)

[12]. The idea of CSA consists in keeping track of the successive
steps taken by the algorithm in the search space. This is done by
computing an evolution path, pt, according to

pt+1 = (1� c�)pt +

s
c�(2� c�)P�

k=1 w
2
k

�X

k=1

wkU&(k)
t+1 ; (32)

where 0 < c� � 1 and p�0 = 0. The constant
q

c�(2�c�)P�
k=1 w

2
k

is a
normalization factor that is chosen such that under random selec-
tion, if pt is normally distributed (pt � N (0; In�n)), then pt+1 is
identically distributed [10, 11]. The evolution path is used to adapt
the step-size �t according to the following rule.

�t+1 = �t exp
c�
d�

�
kpt+1k

EkN (0; In�n)k
� 1
�

: (33)



The norm of the evolution path is compared to the expected norm of
a standard normal vector by computing the ratio kpt+1k

EkN (0;In�n)k and

the step-size is updated depending on this ratio: if kpt+1k
EkN (0;In�n)k �

1, �t is increased as this suggests that the progress is too slow.
Otherwise, �t is decreased. d� is a damping factor whose role is to
moderate the changes in �t values.

In order for this adaptation mechanism to be compliant with our
general adaptation rule G�(�t; &�Ut+1) (see (13)), we take c� = 1,
that is, we consider CSA without cumulation. In this case, (32)
becomes

pt+1 =

s
1P�

k=1 w
2
k

�X

k=1

wkU&(k)
t+1 :

For the damping factor, we use

d� = 2 + 2 max

0

@0;

s
1=
P�
k=1 w

2
k � 1

n+ 1
� 1

1

A ;

which is the default value recommended in [11] with c� = 1.

8.2 Simulations of the Markov Chain and Sin-
gle Runs

We test Algorithm 1 on two convex quadratic functions, as a par-
ticular case of Corollary 1: the sphere function, fsphere, and the ellip-
soid function, fellipsoid, with a moderate condition number. They are
de�ned according to (28) by taking (i) H = In�n for fsphere and (ii)
H diagonal with diagonal elements [H]i = �

i�1
n�1 , i = 1; � � � ; n,

for fellipsoid and with a condition number � = 10.
We choose xopt to be at (10; � � � ; 10)| and construct the (active)

constraints following the steps below:

� For the �rst constraint, b1 = �rxf(xopt)| and c1 = �b|
1xopt,

� For them�1 remaining constraints, we choose the constraint
normal bi as a standard normal vector (bi � N (0; In�n))
and ci = �b|

i xopt. We choose the point rxf(xopt)| = �b1
to be feasible, along with xopt. Therefore, if gi(rxf(xopt)|) >
0, we modify bi and ci according to: bi = �bi and ci =
�ci.

With the construction above, the constraints satisfy the LICQ (see
Remark 1) with probability one. In such a case, the unique vector
of Lagrange multipliers associated to xopt is 
opt = (1; 0; � � � ; 0)|.

As for the parameters of Algorithm 1, we choose the default val-
ues in [11] for both � and �. We set the weights wi, i = 1; � � � ; �,
according to [1], where they are chosen to be optimal on the sphere
function in in�nite dimension. We take d
 = d! = 5, � = 21=n,
k1 = 3, and k2 = 5.

We run Algorithm 1 and simulate the Markov chain (�t)t2N (de-
�ned in Theorem 1) in n = 10 on fsphere and fellipsoid with m =
1; 2; 5; 9 constraints. For each problem, we test three different ini-
tial values of the penalty vector!0 = (1; � � � ; 1)|, (103; � � � ; 103)|,
(10�3; � � � ; 10�3)|. In all the tests, X0 and Y0 are sampled uni-
formly in [�5; 5]n, �0 = 1, and 
0 = �0 = (5; � � � ; 5)|.

Figures 2-5 show simulations of the Markov chain on fsphere (left
column) and fellipsoid (right column) subject to 1, 2, 5, and 9 con-
straints respectively. Displayed are the normalized distance to xopt,
kYtk (red), the normalized distance to 
opt, k�tk (green), and the
norm of the vector of penalty factors, k!tk (blue) in log-scale, for
!0 = (1; � � � ; 1)| (�rst row), !0 = (103; � � � ; 103)| (second row),
and !0 = (10�3; � � � ; 10�3)| (third row). We observe an over-
all convergence to a stationary distribution, independently of !0,
after a certain number of iterations. For !0 = (103; � � � ; 103)|,
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Figure 2: Simulations of the Markov chain on fsphere (left) and
fellipsoid (right) with m = 1 in n = 10.

the adaptation phase before reaching the stationary state is longer
than with !0 = (1; � � � ; 1)| or !0 = (10�3; � � � ; 10�3)| on both
fsphere and fellipsoid. It also increases with increasing m: it takes ap-
proximately 4 � 103 iterations on fsphere and fellipsoid with m = 1
(Figure 2) and approximately 6� 103 iterations with m = 9 (Fig-
ure 5). Indeed, the problem becomes more dif�cult for large m (as
shown below with single runs). We also observe from Figures 2-5
that k!tk stabilizes around a larger value as m increases (approxi-
mately 4 � 10�4 and 6 � 10�5 on fsphere and fellipsoid respectively
with m = 1 versus approximately 1 and 4 with m = 9).

Figures 6-9 show single runs of Algorithm 1 on the same con-
strained problems described previously. Results on constrained
fsphere and constrained fellipsoid are displayed in left and right columns
respectively. The displayed quantities are (i) the distance to the op-
timum, kXt � xoptk (red), (ii) the distance to the Lagrange mul-
tipliers, k
t � 
optk (green), (iii) the norm of the penalty vector,
k!tk (blue), and (iv) the step-size, �t (purple), in log-scale. Lin-
ear convergence occurs after an adaptation phase whose length de-
pends on the accuracy of the choice of the initial parameters: for
m = 1 and !0 = (10�3; � � � ; 10�3)| (Figure 6, third row), linear
convergence occurs after only around 30 iterations because !0 is
already close to a stationary value (see Figure 2). On fsphere with
m = 2 (Figure 7, left column), the algorithm reaches a distance
to xopt of 10�4 after around 750 iterations with !0 = (1; � � � ; 1)|,
compared to around 2500 iterations with !0 = (103; � � � ; 103)|

and around 1300 iterations with !0 = (10�3; � � � ; 10�3)|. The
reason is that !0 = (1; � � � ; 1)| is closer to the stationary value in
this case (Figure 3, left column). As the number of constraints in-
creases (Figures 8 and 9), the number of iterations needed to reach a
given precision increases: it takes more than 2 times longer to reach
a distance from the optimum of 10�4 on both fsphere and fellipsoid
with m = 9 and !0 = (1; � � � ; 1)| (Figure 9, �rst row) than with
m = 1 (Figure 6, �rst row). These results are consistent with the
simulations of the Markov chain in that the observed stability of
the Markov chain leads to linear convergence (or divergence) of
the algorithm�as stated in Theorem 3.

9. DISCUSSION
In this work, we investigated linear convergence of a (�=�w; �)-

ES with an augmented Lagrangian constraint handling on the lin-
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Figure 3: Simulations of the Markov chain on fsphere (left) and
fellipsoid (right) with m = 2 in n = 10.
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Figure 4: Simulations of the Markov chain on fsphere (left) and
fellipsoid (right) with m = 5 in n = 10.

early constrained problem where all the constraints are active. We
adopted a Markov chain approach and exhibited a homogeneous
Markov chain on problems where the associated augmented La-
grangian, centered in the optimum and the corresponding Lagrange
multipliers, is positive homogeneous of degree 2. We gave suf-
�cient stability conditions which, when satis�ed by the Markov
chain, lead to linear convergence to the optimum as well as to the
Lagrange multipliers. Simulations of the Markov chain on linearly
constrained convex quadratic functions (as a particular case of the
exhibited class of functions) show empirical evidence of stability
for the tested parameter setting. We draw attention, however, to the
fact that the observed stability may depend on the chosen parameter
setting�in particular the damping factors for the Lagrange factors
and the penalty factors�and proper parameter values are neces-
sary to observe stability, especially in larger dimensions and for
large numbers of constraints.

The conducted analysis gives insight into the behavior of the
practical (�=�w; �)-ES obtained when optimizing the augmented
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Figure 5: Simulations of the Markov chain on fsphere (left) and
fellipsoid (right) with m = 9 in n = 10.
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Figure 6: Single runs on fsphere (left) and fellipsoid (right) withm = 1
in n = 10, with three different values of !0.

Lagrangian presented in (9). Indeed, we focus our study on the
most dif�cult case in practice, where all the constraints are active
at the optimum.

Finally, this work illustrates how the Markov chain approach�
which is already applied to prove linear convergence of random-
ized optimization algorithms in the unconstrained case�can be ex-
tended to the constrained case.
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APPENDIX
A. PROOFS

A.1 Proof of Proposition 1
For Algorithm 1, the state st = (Xt; �t; 
t; !t). Let

(X0t+1; �
0
t+1; 


0
t+1; !

0
t+1) =

F (f(:�x0);fgi(:�x0)gi=1;��� ;m)(�(x0)(Xt; �t; 
t; !t);Ut+1) :

Given the de�nition of �(x0) in (16) and the update functions Gx,
G� ,H
 , andH! in (12), (13), (14), and (15) respectively, we have

X0t+1 = Gx((Xt + x0; �t); &h(:�x0;
t;!t)
(Xt+x0;�t)

� Ut+1)

= Xt + x0 + �t
�X

i=1

wi[&h(:�x0;
t;!t)
(Xt+x0;�t)

� Ut+1]i ;

�0t+1 = G�(�t; &h(:�x0;
t;!t)
(Xt+x0;�t)

) :

On the other hand, we have

&h(:�x0;
t;!t)
(Xt+x0;�t)

= Ord(h(Xt + x0 + �tUit+1 � x0; 
t; !t)i=1;��� ;�)

= &h(:;
t;!t)
(Xt;�t)

:

It follows that

X0t+1 = Gx((Xt; �t); &h(:;
t;!t)
(Xt;�t)

� Ut+1) + x0

= Xt+1 + x0 ; (34)

�0t+1 = G�(�t; &h(:;
t;!t)
(Xt;�t)

) = �t+1 :

Using (34), we obtain


0it+1 = Hgi(:�x0)

 (
it ; !

i
t;X
0
t+1) = 
it +

!it
d

gi(X0t+1 � x0)

= Hgi
 (
it ; !
i
t;Xt+1) = 
it+1; i = 1; � � � ;m ;

!0it+1 = H(f(:�x0);gi(:�x0))
! (!it; 


i
t ;Xt + x0;X0t+1)

=

8
>>>>>><

>>>>>>:

!it�1=(4d!) if !itgi(X0t+1 � x0)2 <

k1
jh(X0t+1�x0;
t;!t)�h(Xt+x0�x0;
t;!t)j

n
or k2jgi(X0t+1 � x0)� gi(Xt + x0 � x0)j <

jgi(Xt + x0 � x0)j
!it��1=d! otherwise; i = 1; � � � ;m

= H(f;gi)
! (!it; 


i
t ;Xt;Xt+1) = !it+1; i = 1; � � � ;m :

Therefore,

(Xt+1 + x0; �t+1; 
t+1; !t+1) =

F (f(:�x0);fgi(:�x0)gi=1;��� ;m)(�(x0)(Xt; �t; 
t; !t);Ut+1) :
(35)

By applying the inverse transformation �(�x0) to (35), we recover
F (f;fgigi=1;��� ;m)(Xt; �t; 
t; !t):

A.2 Proof of Proposition 2
The state at iteration t is st = (Xt; �t; 
t; !t). Let

(X0t+1; �
0
t+1; 


0
t+1; !

0
t+1) =

F (f(�:);fgi(�:)gi=1;��� ;m)(�(�)(Xt; �t; 
t; !t);Ut+1) :

By de�nition, we have

&h(�:;
t;!t)
(Xt=�;�t=�) = Ord(h(�(Xt=�+ �t=�Uit+1); 
t; !t)i=1;��� ;�)

= &h(:;
t;!t)
(Xt;�t)

:

Using the de�nition of �(�) in (18), (12), (13), (14), (15), and the
equation above, it follows

X0t+1 = Gx((Xt=�; �t=�); &h(:;
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1
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(Xt;�t)
� Ut+1) =

Xt+1

�
; (36)

and �0t+1 = G�(�t=�; &h(:;
t;!t)
(Xt;�t)

�Ut+1). Using the scale-invariance
property of G� (see (17)), we obtain

�0t+1 =
1
�
G�(�t; &h(:;
t;!t)

(Xt;�t)
� Ut+1) =

�t+1
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:

Finally, using (36) we get
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gi(�X0t+1)

= Hgi
 (
it ; !
i
t;Xt+1) = 
it+1; i = 1; � � � ;m ;

and

!0it+1 = H(f(�:);gi(�:))
! (!it; 


i
t ;Xt=�;X

0
t+1)

=

8
>>>>>><

>>>>>>:

!it�1=(4d!) if !itgi(�X0t+1)2 <

k1
jh(�X0t+1;
t;!t)�h(�Xt=�;
t;!t)j

n
or k2jgi(�X0t+1)� gi(�Xt=�)j <

jgi(�Xt=�)j
!it��1=d! otherwise; i = 1; � � � ;m

= H(f;gi)
! (!it; 


i
t ;Xt;Xt+1) = !it+1; i = 1; � � � ;m :

Therefore,

�Xt+1

�
;
�t+1

�
; 
t+1; !t+1

�
=

F (f(�:);fgi(�:)gi=1;��� ;m)(�(�)(Xt; �t; 
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By applying the inverse transformation �(1=�) to (37), we obtain
F (f;fgigi=1;��� ;m)(Xt; �t; 
t; !t):

A.3 Proof of Theorem 1
We have

Yt+1 =
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where Dh�x;�
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G�(1; & � Ut+1)
=
Hgi(:+�x)

 (�it; !it; ~Yt+1)
G�(1; & � Ut+1)

;

for i = 1; � � � ;m. Finally,

!it+1 = H(f;gi)
! (!it; 


i
t ;Xt;Xt+1)

=

8
>>>>><

>>>>>:

!it�1=(4d!) if !itgi(Xt+1)2 <
k1
jh(Xt+1;
t;!t)�h(Xt;
t;!t)j

n
or k2jgi(Xt+1)� gi(Xt)j <

jgi(Xt)j
!it��1=d! otherwise; i = 1; � � � ;m

=

8
>>>>>><

>>>>>>:

!it�1=(4d!) if !itgi(~Yt+1 + �x)2 <
k1
jh(~Yt+1+�x;�t+�
;!t)�h(Yt+�x;�t+�
;!t)j

n
or k2jgi(~Yt+1 + �x)� gi(Yt + �x)j <

jgi(Yt + �x)j
!it��1=d! otherwise

= H(f(:+�x);gi(:+�x))
! (!it;�

i
t + �
i;Yt; ~Yt+1) ;

for i = 1; � � � ;m, where we used (20), along with (38), and posi-
tive homogeneity of Dh�x;�
;!t with respect to [�x; �
] to deduce that

h(Xt+1; 
t; !t)� h(Xt; 
t; !t) = �2
t (Dh�x;�
;!t(~Yt+1 + �x; �t�t + �
)

�Dh�x;�
;!t(Yt+1 + �x; �t�t + �
))

= �2
t (h(~Yt+1 + �x;�t + �
; !t)� h(Yt + �x;�t + �
; !t)) :

�t+1 = (Yt+1;�t+1; !t+1) is a function of only Yt, �t, !t, and
i.i.d. vectors Ut+1. Therefore, (�t)t2N is a homogeneous Markov
chain.

A.4 Proof of Corollary 1
By de�nition, we have

h(xopt + �x; 
opt + �
; !) = f(xopt + �x)
| {z }

A

+
mX

i=1

(
iopt + �
i)gi(xopt + �x)

| {z }
B

+
mX

i=1

!i

2
gi(xopt + �x)2

| {z }
C

:

By developing A, B, and C, we obtain

A = �2f(xopt + x) + (1� �2)f(xopt) + �(1� �) x|
optH| {z }

rxf(xopt)

x ;

B =
mX

i=1

�2(
iopt + 
i)gi(xopt + x) + �(1� �)
iopt bi|{z}
rxgi(xopt)

x ;

C = �2
mX

i=1

!i

2
gi(xopt + x)2 :

The constraints being active at xopt, h(xopt; 
opt; !) = f(xopt) for
all ! 2 (R+

>)m. It follows that

Dhxopt;
opt;!(xopt + �x; 
opt + �
)

= �2
�
f(xopt + x) +

mX

i=1

(
iopt + 
i)gi(xopt + x) +
!i

2
gi(xopt + x)2

� f(xopt)
�

+ �(1� �)
�
rxf(xopt) +

mX

i=1

rxgi(xopt)

| {z }
0

�
x :

The KKT stationarity condition in (29) is satis�ed for xopt and 
opt.
Therefore,

Dhxopt;
opt;!(xopt + �x; 
opt + �
)

= �2Dhxopt;
opt;!(xopt + x; 
opt + 
) :

Consequently, (�t)t2N is a homogeneous Markov chain with f
convex quadratic.

A.5 Proof of Theorem 3
We express 1

t ln kXt�xoptk
kX0�xoptk

, 1
t ln k
t�
optk

k
0�
optk
, and 1

t ln �t
�0

as a func-
tion of the homogeneous Markov chain (�t)t2N de�ned in Theo-
rem 1. Using the property of the logarithm, we have

1
t

ln
kXt � xoptk
kX0 � xoptk

=
1
t

t�1X

k=0

ln
kXk+1 � xoptk
kXk � xoptk

=
1
t

t�1X

k=0

ln
kYk+1k
kYkk

G�(1; & � Uk+1)

=
1
t

t�1X

k=0

ln kYk+1k �
1
t

t�1X

k=0

ln kYkk

+
1
t

t�1X

k=0

lnG�(1; & � Ut+1) : (39)

(�)t2N is positive Harris-recurrent with an invariant probability
measure � and E�(j ln k[�]1kj) <1, E�(j ln k[�]2kj) <1, and
E�(R(�)) <1. Therefore, we can apply Theorem 2 to the right-



hand side of (39). We obtain

lim
t!1

1
t

ln
kXt � xoptk
kX0 � xoptk

= lim
t!1

1
t

t�1X

k=0

ln kYk+1k

� lim
t!1

1
t

t�1X

k=0

ln kYkk+ lim
t!1

1
t

t�1X

k=0

lnG�(1; & � Ut+1)

=
Z

ln k[�]1k�(d�)�
Z

ln k[�]1k�(d�) +
Z
R(�)�(d�)

= �CR :

We proceed similarly with 1
t ln k
t�
optk

k
0�
optk
and 1

t ln �t
�0

.

1
t

ln
k
t � 
optk
k
0 � 
optk

=
1
t

t�1X

k=0

ln k�k+1k �
1
t

t�1X

k=0

ln k�kk

+
1
t

t�1X

k=0

lnG�(1; & � Ut+1) ; (40)

1
t

ln
�t
�0

=
1
t

t�1X

k=0

�k+1

�k

= lim
t!1

1
t

t�1X

k=0

lnG�(1; & � Ut+1) : (41)

By applying Theorem 2 to the right-hand side of (40) and (41), we
obtain

lim
t!1

1
t

ln
k
t � 
optk
k
0 � 
optk

= lim
t!1

1
t

ln
�t
�0

= �CR :
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