
HAL Id: hal-01456883
https://inria.hal.science/hal-01456883

Submitted on 6 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Modeling Service Migration and Relocation in
Mission-Critical Systems

Yanjun Zuo

To cite this version:
Yanjun Zuo. Modeling Service Migration and Relocation in Mission-Critical Systems. 7th Interna-
tional Conference on Critical Infrastructure Protection (ICCIP), Mar 2013, Washington, DC, United
States. pp.155-170, �10.1007/978-3-642-45330-4_11�. �hal-01456883�

https://inria.hal.science/hal-01456883
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Chapter 11

MODELING SERVICE MIGRATION
AND RELOCATION IN
MISSION-CRITICAL SYSTEMS

Yanjun Zuo

Abstract Mission-critical information systems are commonly used in critical in-
frastructure assets such as the electric power grid, telecommunications
networks, healthcare systems, water management systems and national
defense. Damage or disruption of these systems could result in the loss
of services and potentially serious societal consequences. Therefore,
it is important to ensure that the essential services provided by these
systems are reliable and dependable. This paper presents a modeling
framework for service migration and relocation, which can dynamically
transfer critical services from a compromised platform to other healthy
platforms. The mechanism guarantees that vital services are continu-
ously available despite malicious attacks and system failures. When the
compromised platform has recovered, the services can be moved back
to the platform. The modeling framework provides a means for study-
ing the important factors that impact service migration and relocation,
and how an assured service migration mechanism can be designed to
increase confidence about the reliability of mission-critical information
systems.

Keywords: Mission-critical systems, migration, reliability, availability

1. Introduction

Mission-critical systems provide vital services and must, therefore, be reliable
and dependable despite malicious attacks and system failures. Their use in
critical infrastructure assets such as the electric power grid, telecommunications
networks, healthcare systems, water management systems and national defense
raises serious concerns about their ability to withstand hardware and software
failures, operator errors, power outages, environmental disasters and attacks
by adversaries [9].

156 CRITICAL INFRASTRUCTURE PROTECTION VII

Despite the best efforts of system developers and security practitioners, it
is infeasible to assure that a mission-critical system will be invulnerable to
well-organized attacks and unpredictable system failures. Indeed, the scale
and complexity of mission-critical systems make it almost impossible to build
completely secure and reliable systems. Consequently, it is prudent to prepare
for the worst-case scenarios involving security incidents and system failures
while ensuring that critical services continue to be available.

This paper focuses on service migration and relocation as a means for ensur-
ing critical service availability. Informally, service migration is a process that
suspends a critical service on its current faulty platform and moves its core pro-
grams and data to a clean, healthy platform where the service is resumed from
where it left off. At a later time, after the compromised platform has recovered
and the environment has been sanitized, the critical service is relocated to the
original platform and its execution is resumed. Such migration and relocation
is incorporated in the architectures of many safety-critical systems [6].

Compared with other survivability approaches, service migration is a viable
solution to ensure that the most critical services are available in a challenging
environment. Techniques such as fault tolerance/masking and damage avoid-
ance are often too expensive or infeasible for large and complex mission-critical
systems. In situations where faults are extensive and non-maskable, system
operations cannot be continued, even when the system has multiple redundan-
cies. Reconfiguration [7, 10] can avoid intensive replication, but it requires a
change in the functional specifications of the platforms that are in operation.
Dynamically reconfiguring a system is not always possible, especially when sys-
tem components have been compromised and only untrustworthy components
are available for reconfiguration. Unlike these techniques, strategic migration
allows critical services to be continuously provided by other healthy platforms
without incurring expensive resource duplication or attempting to reconfigure
a system that is not trustworthy.

This paper presents a modeling framework for service migration and reloca-
tion in mission-critical systems. A stochastic process algebra, i.e., the Perfor-
mance Evaluation Process Algebra (PEPA) [5], is used to represent the activi-
ties and components of a complete service migration and relocation procedure.
Since critical services are essential, minimal time and effort should be required
to move the mission-critical services and relocate them back after the original
platform has recovered. This paper studies how important factors such as the
probability of severe damage on a platform and the probability and duration
of viable migration scheduling can impact the effectiveness and efficiency of
service migration and relocation. The resulting model can be used to deter-
mine the important factors and how they impact service availability. Also, it
can reduce the magnitude of service interruptions by helping deploy the most
effective and efficient service migration and relocation mechanisms.

Zuo 157

2. Related Work

Migration has been studied for a number of purposes, including applica-
tion and service survivability, improvement of the quality of services, resource
optimization, system agility and network virtualization. Migration has been
proposed at a variety of levels, including services, system components, operat-
ing system processes, program threads and applications (e.g., mobile agents).

Choi, et al. [2] have proposed a methodology for run-time software compo-
nent migration for application survivability in distributed real-time systems.
Two properties are necessary for fast component migration: lightweight ser-
vice and data transfer and proactive resource discovery. Choi and colleagues
developed middleware to support prompt software component migration and
identify the available resources to complete the migration. Experimental results
demonstrate that the approach takes much less time compared with techniques
based on reactive resource discovery.

Amoretti, et al. [1] have studied service migration in SP2A-based clouds
(SP2A is a framework and middleware for peer-to-peer service-oriented archi-
tectures). They propose a framework and middleware for highly dynamic and
adaptive clouds, characterized by peer providers and services that can be repli-
cated by code mobility mechanisms.

Another service migration mechanism [4] moves the computational services
of a virtual server to other available servers for adaptive grid computing. This
enables computations to be resumed on a remote server without service reinstal-
lation. The mechanism is incorporated in DSA, a Java compliant distributed
virtual machine that accommodates adaptive parallel applications in grids.

Cohen, et al. [3] have proposed a service migration approach for enterprise
system architectures. Instead of locating and delivering data to a processing
site as in the case of traditional systems, services are delivered to the data sites
for efficiency and higher levels of service availability. This approach extends
the notion of a service-oriented architecture and is particularly effective when
massive volumes of data (in terabytes) have to be processed. However, the
approach requires new technical infrastructures and policies for client and server
systems.

Li, et al. [8] have presented a service migration protocol that supports mul-
timedia transfer in single-user, multiple-device scenarios. Data sessions are
grouped by users and can seamlessly migrate to devices associated with the
same user. A proxy is used to bridge a client and a server and a protocol
is used to retain the current client and server operations while placing new
functions at the proxy through naming and control and data plane designs.

The migration approaches described above are very specific and are defined
at the lower level of system processes. Our methodology complements these
approaches with the objective of providing a general analytic framework that
can model and simulate service migration and relocation. Furthermore, it helps
users identify the factors that influence the effectiveness and efficiency of service
migration and relocation.

158 CRITICAL INFRASTRUCTURE PROTECTION VII

Figure 1. Workflow of a service migration and relocation process.

3. Service Migration and Relocation

Let SYS be a distributed system that provides critical services S1, S2, ...,
Sn. SYS is composed of a set of computing platforms P1, P2, ..., Pm. Each
service Sj is executed on one platform at any time and operates as a set of
programs. It is assumed that service Sj is executed in a virtualized container
and is, thus, self-contained, i.e., the service programs, data and processes can
be referenced within its namespace. Technically, it is possible to move a service
from its current platform Pi to a new platform Pk in a situation where Pi

has been severely damaged. In such a case, allowing the platform to continue
to perform mission-critical functions could be disastrous. To ensure that the
critical services can be provided continuously and to avoid further losses, the
services must be transferred to other healthy platforms that are immune to the
same types of attacks that compromised the original platform.

Figure 1 shows the workflow of a service migration and relocation process.
We assume that a set of services S1, S2, ..., Sn are currently executing on
platform Pi. Suppose that abnormal behavior is detected on Pi and reported as
shown in Step 1. This event triggers a thorough investigation and analysis of Pi

by the security systems of SYS. If the damage assessment indicates that Pi has
been severely damaged and service migration is the most appropriate strategy,
then a service migration and relocation process initiates. For simplicity, we
discuss the migration and relocation of one critical service Sj.

After a migration decision is made, two actions are taken concurrently as
indicated by Step 2. The first action is to halt service Sj appropriately, e.g., by
freezing the service processes, recording global data (service configuration and
state), recording the states of individual processes and terminating the entire
service program. As part of the second action, a migration scheduler attempts
to generate a service migration arrangement for service Sj to be migrated from

Zuo 159

Pi to a new, healthy platform Pk. The new platform must be able to support
the core functions of Sj and should be immune to the same types of attacks
suffered by Pi. Since a suitable platform may not always be available (e.g., in
an environment in which resources are limited), we use a stochastic process to
quantify the probability of whether or not an appropriate platform is available.
If a platform is not available, the scheduler is modeled to constantly repeat the
scheduling process – on the chance that a new platform becomes available at a
later time when the operating environment has improved.

The service migration process is composed of three sub-processes [11]: (i)
migration preparation, which saves the service programs and data in a resume-
able image in a self-contained format with header, global data, internal process
dependencies and shared resources (task structure and open files); (ii) service
and data transfer, which synchronizes data copies, withdraws transactions, es-
tablishes recovery points and disseminates the packed service programs and
data to the new platform Pk; and (iii) service setup on Pk, which creates a
new namespace and restores the service configuration and state. Since some
data associated with Sj may have been damaged, the system must provide sup-
plemental data or generate fuzzy data to support the continuity of service Sj .
When Sj is executed on the new platform Pk, the compromised platform Pi is
immediately repaired. A recovery process in the model covers fault diagnosis
and damage repair.

In Step 3 in Figure 1, after the service and data are set up on the new
platform Pk, the execution of Sj is resumed. Sj may continue to execute on Pk

to completion. However, for a long-running service, if the previously damaged
platform Pi has recovered, then Sj must be moved back to Pi. This relocation
is necessary for several reasons [11]: (i) it improves data access locality by
relocating a service closer to the data; (ii) it provides better system response
time by relocating the service closer to users; and (iii) it makes for better load
balancing by relocating the service to its initial platform based on an optimal
resource assignment scheme.

In Step 4, a repair completion notification is sent by the recovery manager
to Pk when Pi is fully recovered. In Step 5, the relocation manager arranges to
move Sj back to Pi. Service relocation is composed of three sub-actions similar
to the migration process, but with one major difference – any fuzzy data used
by Sj when it is running on Pk is meant to be used only temporarily while
Pi is being repaired. A correctional recovery must be performed when Sj is
relocated back to Pi so that the data items reflect the exact values instead of
inaccurate, albeit acceptable, values. Finally, in Step 6, Sj runs to completion
on the repaired platform Pi.

To ensure that critical services are provided with minimal interruption, we
examine how important factors, such as various system security and functional
properties, affect the activities that support an effective and efficient migration
and relocation process. For example, the probability (or frequency) of severe
damage to a platform significantly impacts the normal operations of the critical
services on the platform. Intuitively, if a system has a strong security baseline,

160 CRITICAL INFRASTRUCTURE PROTECTION VII

few vulnerabilities, efficient intrusion detection and high levels of fault tolerance
and masking abilities, then the probability of a platform being severely damaged
would be low. Consequently, the critical services can operate on their original
platforms most of the time. In such situations, the need for service migration
and relocation is minimized. Even in a worst-case scenario, when a migration is
necessary, it is necessary to ensure that some key system properties, if satisfied,
will provide for effective and efficient service migration. For example, a new
platform must be available to host the services when damage is detected to the
original platform. Halting the services on the compromised platform and setting
them up on the new platform must be completed as quickly as possible. The
service priority, response time and throughput must be ensured both during and
after the service migration. As will be seen below, these factors are expressed as
model parameters (e.g., activity rates) in a simulation because we are interested
in learning how the parameters affect the normal execution of critical services.

4. Service Migration and Relocation Modeling

We use the PEPA model [5] to express and simulate the activities and behav-
ior of system components in a service migration and relocation process. PEPA
introduces delays and probabilistic occurrences to process algebras. The timing
behavior of a system is quantified by associating a random variable with each
activity, which represents its duration. Behavior uncertainty is determined by
probabilistic branching – the probabilities of occurrence of some activities are
determined by race conditions between the enabled activities. The model rep-
resents service migration and relocation activities as stochastic actions that are
non-deterministic and whose occurrence or non-occurrence are predicted by one
or more random variables (i.e., activity rates).

Figure 2 shows the PEPA model representing a system SYS. The system SYS
is modeled in terms of interactions between the service migration and relocation
components (i.e., a migrating scheduler, a platform supporting a critical service
and a relocation manager) and the damage recovery components (i.e., a fault
diagnosing agent and a damage repairer). The model has eleven processes
(components) representing the entire procedure for service Sj to migrate from
a compromised platform Pi to a new platform Pk and relocate from Pk to
Pi after Pi has recovered. The model also includes the recovery procedure
of the compromised component. The PEPA processes and their activities are
described below.

Process Executioni j models the behavior of platform Pi where service Sj is
executed. It either executes normally or needs to be investigated if the intrusion
detection system (implicitly modeled) reports suspicious (or abnormal) behav-
ior. Correspondingly, Pi behaves either as (monitor anomaly, p1).(alarm, al)
.Contingencyi or (monitor normal, p2).(executingi j , f).Executioni j in the
PEPA model. The former describes the situation where the system reports
damage symptoms (represented by the PEPA activity monitor anomaly). In
this case, an alarm is trigged (represented by the PEPA activity alarm) and Pi

enters a contingency state (represented by the PEPA process Contingencyi),

Zuo 161

Executioni_j (monitor_anomaly, p1).(alarm, al).Contingencyi + (monitor_normal,
p2). (executingi_j, f).Executioni_j;

Contingencyi (investigate_damaged, (it *p3)).(recovery_notifyi, tt).Migration_Manager
+ (investigate_self_contain, (it *p4)).Executioni_j;

Migration_Manager (haltingi_j, h).Migration_Scheduler;

Migration_Schedule (schedule_ok,(st *p5)).Migrationi_k
+(schedule_failure,(st*p6)).Migration_Scheduler;

Migrationi_k (m_Pre, m1).(m_Tr, m2).(m_Su, m3).Executionk_j;

Executionk_j (recovery_check_ok, p7).(recoveredi, T).Relocation_Manager +
(recovery_check_pending, p8).(executingk_j, f).Executionk_j;

Relocation_Manager (haltingk_j, h).Relocationk_i;

Relocationk_i (r_Pre, r1).(r_Tr, r2).(r_Su, r3).Executioni_j;

Recovery_Manager (recovery_notifyi, T).Recoveryi;

Recoveryi (diagnose, dt).Repairer;

Repairer (repair_success, (l *p9)).(recoveredi, rp).Recovery_Manager +
(repair_fail, (l*p10)).Recoveryi;

 SYS Executioni_j Recovery_Manager

(L = {recovery_notifyi, recoveredi})

Figure 2. PEPA model of service migration and relocation.

where the symptoms are further analyzed. The latter represents the case
when no abnormal symptom is detected (represented by the PEPA activity
monitor normal). Therefore, Sj is continuously executed on Pi (represented by
executingi j). The probabilities of occurrence of the two cases are denoted by
p1 and p2, respectively. In our model, monitor anomaly and monitor normal
have default activity rates of one; alarm and executingi j have the rates al and
f , respectively, indicating that the two activities have durations that are neg-
atively exponentially distributed with parameters al and f , respectively. The
probabilities that alarm and executingi j occur within a period of time length
t are 1 − e−al∗t and 1 − e−f∗t, respectively.

The PEPA process Contingencyi represents the investigation of platform Pi

for advanced analysis given the reported suspicious behavior. Based on the in-
vestigation results, Contingencyi behaves either as (investigate damaged, (it∗
p3)).(recovery notifyi, tt).Migration Manager or (investigate self contain,
(it ∗ p4)).Executioni j . In the first case, the investigation reveals that Pi is
severely damaged (represented by the PEPA activity investigate damaged).
Thus, a recovery notification (recovery notifyi) is sent to Recovery Manager
in order to arrange for Pi to recover. Furthermore, the system starts the service
migration process (represented by the PEPA process Migration Manager) to

162 CRITICAL INFRASTRUCTURE PROTECTION VII

move the critical service Sj executing on Pi to a new, healthy platform. In the
second case, the damage is not severe and the system can self-contain or mask
the damage without disrupting Sj (represented by investigate self contain).
Therefore, the workflow transits back to the normal execution of Sj on Pi, i.e.,
Executioni j . The probabilities of the two investigation results are denoted by
p3 and p4, respectively. The activity rate it probabilistically determines the du-
ration of the investigation procedure, i.e., the probability that the investigation
is completed within a period of time t is 1 − e−it∗t.

Service migration is modeled using three processes: Migration Manager,
Migration Scheduler and Migrationi k. Migration Manager initializes the
migration procedure by halting service Sj on Pi (represented by the PEPA ac-
tivity haltingi j with a rate h). Migration Scheduler represents the behavior
of the migration scheduler, which identifies a new platform Pk, if one exists,
and arranges for Sj to migrate to Pk. The scheduling process takes an amount
of time that is negatively exponentially distributed with parameter st. As dis-
cussed earlier, the new platform must be capable of providing the functions
required by Sj and in the meantime be immune to the same types of attacks
that compromised platform Pi.

The scheduling process yields one of two possible results: (i) a suitable
platform Pk is identified (represented by the PEPA activity schedule ok) with
probability p5; and (ii) no Pk is available given the current system resources
(represented by schedule failure) with probability p6. For the first case, the
actual migration can start as represented by the PEPA process Migrationi k.
Migrationi k engages three activities m Pre, m Tr and m Su, which corre-
spond to migration preparation, service and data transfer, and setup on the
new platform Pk, respectively. Their corresponding PEPA activity rates are
m1, m2 and m3. However, if the scheduling process does not identify a suit-
able Pk, then the workflow returns to Migration Scheduler for rescheduling
(hopefully a suitable platform will be available the next time).

The PEPA process Executionk j represents the execution of service Sj on
the new platform Pk. Depending on whether the compromised platform Pi has
recovered or not, Pk behaves differently. As discussed above, Sj has to be relo-
cated when Pi has recovered. The first behavior of the process Executionk j ,
i.e., (recovery check ok, p7).(recoveredi, T).Relocation Manager covers this
case with a probability p7 when the status of Pi is periodically checked (recover
y check ok). Indeed, in this case, Pk synchronizes with the Recovery Manager
through the activity recoveredi. This activity has an unspecified rate (denoted
by T and is determined by the repair notification rate rp when the two processes
Executionk j and Recovery Manager are synchronized). Then, the system
starts the relocation process Relocationk i, which moves Sj to its original plat-
form Pi. Relocationk i engages three activities r Pre, r T r and r Su. The sec-
ond behavior of Executionk j , i.e., (recovery check pending, p8).(executingk j ,
f).Executionk j represents the continuous execution of Sj on Pk given the
condition that Pi is still being repaired (represented by the PEPA activity
recovery check pending). The probability of this case is represented by p8. In

Zuo 163

terms of time, Sj is executed on Pk (represented by executingk j) for a dura-
tion that is negatively exponentially distributed with a parameter f before the
process returns to Executionk j for the next cycle of repair checking.

The damage recovery subsystem of SYS is modeled by three PEPA compo-
nents: (i) Recovery Manager, a coordinator that waits for a recovery notifi-
cation (represented by recovery notifyi) and then starts a recovery process;
(ii) Recoveryi, a local agent responsible for recovering platform Pi; it first per-
forms fault diagnosis on Pi (represented by the PEPA activity diagnose with
a rate dt) and then develops a plan for repair; and (iii) Repairer, a component
responsible for the actual repair of Pi. System repair is application-specific and
can take various forms, e.g., system restoration, check pointing and rollback,
and re-programming. Given the diagnosis information, Pi may be successfully
repaired (represented by repair success) with probability p9 or repair is not
possible (represented by the activity repair fail) with probability p10. In the
first case, the workflow returns to the PEPA process Recovery Manager, indi-
cating that the damage recovery system has completed the recovery of Pi and
is waiting for the next recovery request. In the second case, since the repair
attempt has not resulted in successful repair, further diagnosis is necessary.
Therefore, the workflow returns to Recoveryi for more diagnostic information
about the cause and nature of the damage on the promised platform.

Finally, the service migration and relocation enabled system SYS is modeled
using the PEPA cooperation operator Executioni j ◃▹L Recovery Manager
(where L = {recovery notifyi, recoveredi}) to represent the concurrent inter-
actions of the execution of service Sj on platform Pi, and the damage recovery
activities in the case of severe damage to Pi, via synchronized participation
in the events Recovery notifyi and recoveredi. While a severe damage event
triggers the service migration process, a successful repair results in the migrated
service being moved back to the original platform.

5. Simulation Results and Analysis

The PEPA model presented in this paper was solved using the PEPA Eclipse
plug-in software [5]. The activity rates used in the model are shown in Table 1.
A Bayesian network decision model was used to determine the activity rates.
Due to space limitations, the Bayesian network model is not presented in this
paper.

5.1 Overview

We conducted several rounds of simulations for steady-state, utilization,
passage-time, throughput and experimental analysis in order to study how the
important factors influence the effectiveness and efficiency of service migration
and relocation.

In order to run the PEPA simulation, the system states corresponding to the
underlying continuous time Markov processes were derived and the probability
of the system at each state was generated. The PEPA model incorporated 33

164 CRITICAL INFRASTRUCTURE PROTECTION VII

Table 1. Parameter settings for the PIPA model.

Parameter Value Explanation

p1 0.001 Probability that an anomaly is detected on platform Pi

al 0.5 Alarm on Pi is fired for two time units
p2 1 − p1 Probability that the intrusion detection system reports

normal activities
it 0.1 Investigation of Pi takes ten time units upon triggering

an alarm
f 0.1 Sj is executed on Pi for ten time units before the next

intrusion report
p3 0.1 Probability that Pi is severely damaged
tt 1 Repair notification to the Recovery Manager takes one

time unit
p4 1 − p3 Probability that the damage is not severe and Pi can

contain the damage
h 0.2 Service Sj takes five time units to be halted appropriately
st 0.3 Migration scheduling takes about 3.3 time units
p5 0.8 Probability that a new platform Pk is identified for Sj to

migrate
p6 1 − p5 Probability that no suitable platform is available for Sj

to migrate
m1 0.25 Migration preparation takes four time units
m2 0.5 Data and service transfer to the new platform Pk takes

two time units
m3 0.2 Setting up service Sj on Pk takes five time units
p7 0.01 Probability that Pi has recovered while Sj is executing

on Pk

p8 1 − p7 Probability that Pi still has to recover
r1 0.25 Relocation preparation takes four time units
r2 0.5 Data and service transfer back to the repaired Pi takes

two time units
r3 0.1 Setting up service Sj on Pi takes five time units
dt 0.1 Diagnosing the nature of the damage to Pi takes ten time

units
l 0.001 Attempting to repair Pi takes 1,000 time units

p9 0.6 Probability that Pi can be successfully repaired
p10 1 − p9 Probability that Pi cannot be repaired (new diagnosis is

necessary)
rp 1 Sending a repair completion notification to Pk takes one

time unit

global states. Since the model had two top-level PEPA processes, Executioni j

and Recovery Manager, a global state had two elements, one for each local
state of the corresponding top-level processes. The simulation revealed that

Zuo 165

Executioni j had seventeen local states while Recovery Manager had four
states.

The system activities were represented as non-deterministic stochastic ac-
tions whose occurrence or non-occurrence were predicted by one or more ran-
dom variables. The system SYS was modeled in terms of interactions between
the service migration and relocation components and the damage recovery sub-
systems. The interactions reached a set of steady states after an extended
execution time. The term “steady state” means that there was a statistically
determined possibility that the system remained in the state.

Our simulations showed that the PEPA states with dominating steady-state
probabilities were associated with the two local states executingi j .Executioni j

(0.891) and Recovery Manager (0.981). This was also observed in our utiliza-
tion analysis, which showed the long-run utilization of each top-level process
in the PEPA model. More precisely, the percentage of time that a top-level
component Executioni j (resp. Recovery Manager) was in the local state
executingi j .Executioni j (resp. Recovery Manager) was 0.891 (resp. 0.981).
Since executingi j .Executioni j represents the normal execution of service Sj

on its original platform Pi, maximizing the utilization of this state is the ob-
jective of an efficient service migration and relocation process. Therefore, in
the following discussion, we focus on how the important factors influence the
utilization of executingi j .Executioni j . This utilization rate is denoted by p.

The activity throughput was also studied in the simulations. The throughput
analysis yielded the rate at which PEPA actions were performed at steady-
state. The two PEPA activities with the highest throughputs were executingi j

(0.09) and monitoring normal (0.09). The former indicates that service Sj

was executing on platform Pi and, hence, a higher value is more desirable. The
latter indicates that the intrusion detection system reported normal system
operations in most cases (i.e., no suspicious behavior was detected). Just as
the steady-state analysis focused on the local state executingi j .Executioni j ,
the throughput of executingi j represented the desired behavior of Sj on Pi;
therefore, it is another metric of interest.

5.2 Simulation Results

We executed the PEPA model with parameter values in the desired ranges.
The experiments were designed to study how system security and functional
factors affect the utilization rate of executingi j .Executioni j , i.e., p and the
throughput of executingi j as mentioned above.

We started with the two factors determined by the security features of sys-
tem SYS: (i) probability of anomaly detection on a platform Pi (p1) in an
intrusion detection reporting cycle; and (ii) probability that the detected dam-
age is severe (p3). Intuitively, if a system has strong security mechanisms and
the ability to contain and mask potential damage, then the need for the critical
services to migrate from their normal executing platforms is low. Hence, the
utilization of executingi j .Executioni j should be higher. The experimental
results confirmed this observation.

166 CRITICAL INFRASTRUCTURE PROTECTION VII

Figure 3. Utilization of executingi j .Executioni j (p1 and p3 values).

Figure 4. Throughput of activity executingi j (p1 and p3 values).

Figure 3 shows the utilization of executingi j .Executioni j for different p1

and p3 values. In particular, it shows that p decreases when p1 and p3 increase.
This clearly indicates that a higher compromise rate for a platform decreases
the amount of time that the platform effectively supports the critical services.
Furthermore, the quantitative relationship between p and p1 is roughly linear
given a fixed p3 rate. This implies that a significant improvement in system
security results in an almost equal increase in the normal execution of critical
services on their original platforms. A similar pattern is observed in Figure 4
for the throughput of executingi j for different p1 and p3 values.

As discussed earlier, the migration manager is responsible for halting a crit-
ical service on a compromised platform, scheduling and arranging a new plat-
form for service migration, moving the data and program space of the service to
the new platform, and finally setting up the service on the new platform. In the
meantime, the recovery manager diagnoses the faults and attempts to repair
the compromised platform. The performance of these two system components
clearly affects service migration. Figures 5 and 6 show that a higher probabil-
ity of a successful migration-scheduling rate (i.e., p5) and a higher probability
of a successful repair of a compromised platform (i.e., p9) positively affect the
utilization of executingi j .Executioni j (i.e., p). This indicates that effective
damage recovery and the availability of healthy platforms increase the overall

Zuo 167

Figure 5. Utilization of executingi j .Executioni j (p5 values).

Figure 6. Utilization of executingi j .Executioni j (p9 values).

efficiency of service migration, which, in turn, increases the percentage of time
that critical services are executed on their normal platforms. However, Figure 6
shows that p becomes stable after p5 reaches a certain value (0.1 in our simu-
lation). This means that any further improvement in migration scheduling will
not improve p significantly. Therefore, migration scheduling is not a significant
bottleneck for executingi j .Executioni j beyond this point.

Next, we examine how the time required to halt a critical service on a com-
promised platform and the time required to repair the compromised platform
affect the utilization of executingi j .Executioni j . Figure 7 shows that when
less time is taken to repair a compromised platform (i.e., higher value of l),
the probability that Sj is executed on platform Pi is higher. Similarly, the
simulation shows that a shorter duration for halting Sj on Pi (i.e., higher value
of h) and a shorter duration for migration scheduling to move Sj to a new plat-
form Pk (i.e., higher value of st) both result in a higher value of p. However,
both results indicate that the effects of h and l on p are not significant beyond
certain points. This implies that further investments in halting and repairing
mechanisms may not significantly increase the probability that critical services
are executed on their normal platforms.

5.3 Passage-Time Analysis

We also conducted various passage-time analyses, i.e., the distribution of
the probabilities that a second event occurs after a given event within a time
duration. Figure 8 shows the passage-time analysis results of detecting ab-
normal symptoms (monitor abnormal) relative to service halting (haltingi).

168 CRITICAL INFRASTRUCTURE PROTECTION VII

Figure 7. Utilization of executingi j .Executioni j (l values).

Figure 8. Detection of abnormal symptoms relative to service halting.

Figure 9. Service setup on a new platform relative to completion.

The results reveal that the occurrence probability of halting service Sj on Pi

(i.e., haltingi) increases with time relative to the event where Pi is detected as
damaged.

The passage-time analysis results in Figure 9 show that the probability of Pi

being repaired (i.e., recoveredi) increases with time relative to the event that
Sj executes on the new platform Pk (i.e., SUk j). In particular, it is almost
certain that the compromised platform Pi will be repaired within about 30 time
units after SUk j .

6. Conclusions

Service migration and relocation is an effective mechanism for dynamically
transferring mission-critical services from a compromised platform to other
clean, healthy platforms to ensure that mission-critical services are provided
continuously. Service migration is crucial in situations where other security
and fault tolerance approaches are infeasible or expensive. In these situations,

Zuo 169

service migration and relocation is a viable solution for minimizing the impact
of malicious attacks and system failures. The process-algebra-based modeling
framework presented in this paper provides a foundation for studying how im-
portant factors can influence the effectiveness and efficiency of service migration
and relocation in mission-critical systems.

Acknowledgement

This research was supported by the U.S. Air Force Office of Scientific Re-
search under Award No. FA9550-12-1-0131.

References

[1] M. Amoretti, M. Laghi, F. Tassoni and F. Zanichelli, Service migration
within the cloud: Code mobility in SP2A, Proceedings of the International
Conference on High Performance Computing and Simulation, pp. 196–202,
2010.

[2] B. Choi, S. Rho and R. Bettati, Fast software component migration for
application survivability in distributed real-time systems, Proceedings of
the Seventh IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing, pp. 269–276, 2004.

[3] S. Cohen, W. Money and S. Kaisler, Service migration in an enterprise
system architecture, Proceedings of the Forty-Second Hawaii International
Conference on System Sciences, 2009.

[4] S. Fu and C. Xu, Service migration in distributed virtual machines for
adaptive grid computing, Proceedings of the International Conference on
Parallel Processing, pp. 358–365, 2005.

[5] J. Hillston and S. Gilmore, Performance Evaluation Process Algebra
(PEPA), Laboratory for Foundations in Computer Science, University
of Edinburgh, Edinburgh, United Kingdom (www.dcs.ed.ac.uk/pepa),
2012.

[6] A. Keromytis, J. Parekh, P. Gross, G. Kaiser, V. Mishra, J. Nieh, D.
Rubenstein and S. Stolfo, A holistic approach to service survivability, Pro-
ceedings of the First ACM Workshop on Survivable and Self-Regenerative
Systems, pp. 11–22, 2003.

[7] M. Koester, W. Luk, J. Hagemeyer, W. Porrmann and U. Ruckert, Design
optimizations for tiled partially reconfigurable systems, IEEE Transactions
on Very Large Scale Integration Systems, vol. 19(6), pp. 1048–1061, 2011.

[8] C. Li, I. Pefkianakis, B. Li, C. Peng, W. Zhang and S. Lu, A multimedia
service migration protocol for single user multiple devices, Proceedings of
the IEEE International Conference on Communications, pp. 1923–1927,
2012.

[9] R. Marsh, Critical Foundations: Protecting America’s Infrastructures, Re-
port of the President’s Commission on Critical Infrastructure Protection,
United States Government Printing Office, Washington, DC, 1997.

170 CRITICAL INFRASTRUCTURE PROTECTION VII

[10] K. Zick and J. Hayes, Low-cost sensing with ring oscillator arrays for
healthier reconfigurable systems, ACM Transactions on Reconfigurable
Technology and Systems, vol. 5(1), article no. 1, pp. 1.1–1.26, 2012.

[11] Y. Zuo, Moving and relocating: A logical framework of service migration
for software system survivability, Proceedings of the Seventh IEEE Inter-
national Conference on Software System Survivability, p. 10, 2013.

