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Chapter 4

ZIGBEE DEVICE VERIFICATION FOR
SECURING INDUSTRIAL CONTROL AND
BUILDING AUTOMATION SYSTEMS

Clay Dubendorfer, Benjamin Ramsey and Michael Temple

Abstract Improved wireless ZigBee network security provides a means to mitigate
malicious network activity due to unauthorized devices. Security en-
hancement using RF-based features can augment conventional bit-level
security approaches that are solely based on the MAC addresses of Zig-
Bee devices. This paper presents a device identity verification process
using RF fingerprints from like-model CC2420 2.4 GHz ZigBee device
transmissions in operational indoor scenarios involving line-of-sight and
through-wall propagation channels, as well as an anechoic chamber rep-
resenting near-ideal conditions. A trained multiple discriminant analysis
model was generated using normalized multivariate Gaussian test statis-
tics from authorized network devices. Authorized device classification
and ID verification were assessed using pre-classification Kolmogorov-
Smirnov (KS) feature ranking and post-classification generalized rele-
vance learning vector quantization improved (GRLVQI) relevance rank-
ing. A true verification rate greater than 90% and a false verification
rate less than 10% were obtained when assessing authorized device IDs.
When additional rogue devices were introduced that attempted to gain
unauthorized network access by spoofing the bit-level credentials of au-
thorized devices, the KS-test feature set achieved a true verification rate
greater than 90% and a rogue reject rate greater than 90% in 29 of 36
rogue scenarios while the GRLVQI feature set was successful in 28 of 36
scenarios.

Keywords: ZigBee devices, RF fingerprinting, ID verification, rogue rejection

1. Introduction

The deployment of wireless personal area networks in industrial control and
monitoring applications is increasing due to their energy efficiency, low complex-
ity and low cost. Standards-based protocols such as ZigBee and IEEE 802.15.4
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commonly provide connectivity in wireless sensor network applications that
support energy management and industrial control automation. ZigBee solu-
tions are also implemented with radio frequency identification tags in hospital
environments to track expensive medical equipment and patient stay, and to
continuously monitor patient vital signs. High levels of security are essential
in ZigBee networks used in critical infrastructure applications, including public
health and the smart grid, where sensitive personal information is handled or
physical systems are controlled.

Improved security and authentication measures must be developed to counter
open source hacking tools such as KillerBee [11] that can undermine ZigBee net-
works. Rogue devices can spoof bit-level credentials such as MAC addresses and
network encryption keys. This has motivated research in physical layer (PHY)
features that can uniquely identify network nodes. PHY features are inher-
ently difficult to replicate, especially when derived from unintentional waveform
modulation effects. Recent work has shown that, once they are identified and
extracted, PHY-based features (e.g., RF fingerprints) can achieve human-like
device discrimination even when using a relatively simple multiple discriminate
analysis (MDA), maximum likelihood (ML) classification technique [4, 5, 8, 10].

This paper expands the use of radio frequency distinct native attribute (RF-
DNA) fingerprints for device classification and verification using 2.4 GHz Zig-
Bee devices in a typical indoor office environment. Line-of-sight and through-
wall propagation channels are considered with dynamic multi-path and signal
attenuation factors such as interior walls and human foot traffic. Time-domain
exploitation of the entire 40-bit IEEE 802.15.4 synchronization header response
(SHR), a mandatory element of every ZigBee transmission, is considered. The
experimental results demonstrate the feasibility of ZigBee device ID verification
using collected responses in operational and near-ideal environments.

Device ID verification is characterized using a test statistic based on nor-
malized multivariate Gaussian distributions of MDA-projected fingerprints and
receiver operating characteristics (ROC) curve analysis. The MDA-based de-
vice ID verification process is demonstrated using RF fingerprints compris-
ing dimensionally-reduced feature sets – minimal features translate to mini-
mal computational complexity. Dimensional reduction analysis (DRA) is used
to select reduced feature sets based on pre-classification Kolmogorov-Smirnov
(KS) feature ranking and post-classification generalized relevance learning vec-
tor quantization-improved (GRLVQI) relevance ranking. A classification per-
formance benchmark of %C = 90% is used for comparative assessment and for
verification assessment. The device ID verification process is assessed based
on the true verification rate (TVR) for authorized devices and the rogue reject
rate (RRR) for unauthorized rogue devices.

2. Experimental Methodology

An Agilent E3238S receiver (Rx) was used to collect emissions from ten
CC2420 2.4 GHz IEEE 802.15.4 ZigBee devices (denoted as Dev1, Dev2, . . .,
Dev10). For each transmitting (Tx) device, a total of NSHR = 1, 000 SHRs
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Figure 1. Operational indoor collection geometry.

were collected under three operating conditions: (i) Tx and Rx inside a Ramsey
STE3000 RF shielded anechoic chamber (CAGE); (ii) Tx and Rx with a clear
line-of-sight (LOS) along a hallway – Location A in Figure 1; and (iii) Tx and
Rx on opposite sides of a wall (WALL) – Location B in Figure 1. A 6 dB gain
Ramsey LPY2 log periodic antenna was placed in the hallway with the main
beam directed at the collection devices.

The collected signals were down-converted, digitized using a 12-bit analog-to-
digital converter and stored as complex in-phase and quadrature components
for subsequent post-collection processing. Amplitude-based burst detection
and baseband processing were performed as described in [1, 6] using a sam-
ple frequency fs = 11.875 Msps and an eighth-order Butterworth filter with
bandwidth WBB = 1 MHz.

2.1 RF Fingerprint Generation

RF fingerprints were extracted from SHR emissions using instantaneous am-
plitude (a), phase (φ) and frequency (f) responses. Characteristics sequences
(a[n], φ[n] and f [n]) were generated using collected complex in-phase and
quadrature signal samples from the SHR region, centered (i.e., mean removal)
and then normalized (i.e., division by maximum value) [5, 9]. Statistical RF
fingerprint features of variance (σ2), skewness (γ) and kurtosis (κ) were cal-
culated to create regional fingerprint markers generated by: (i) dividing each
selected characteristic sequence {a[n]},{φ[n]} and {f [n]} into NR contiguous
equal-length subsequences; (ii) calculating NS metrics for each subsequence,
plus the entire fingerprinted region as a whole (NR + 1 total regions); and (iii)
arranging the metrics in vector form as:

FRi = [σ2
Ri

γRi κRi ]1×NS (1)
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where i = 1, 2, . . . , NR +1. Marker vectors from Equation (1) are concatenated
to form the composite characteristic vector given by:

F = [FR1

...FR2

...FR3
. . . FRNR+1

]1×[NS×(NR+1)]. (2)

When all NC = 3 signal characteristics are used, the final RF fingerprint is
generated by concatenating vectors from Equation (2) according to:

F = [Fa
... Fφ

... Ff ]1×[NS×(NR+1)×NC ] . (3)

Full-dimensional RF-DNA fingerprints are based on a total of NR = 80 SHR
subsequences using NC = 3 signal characteristics (a, φ, f) and NS = 3 statistics
(σ2, γ, κ), for a total of NFull = NS × (NR + 1) × NC = 729 features per RF
fingerprint.

2.2 Device Discrimination

Statistical RF fingerprints for ZigBee SHR responses were generated ac-
cording to Equation (3) and input to a device discrimination process shown
in Figure 2. The device discrimination process supports both classification
and verification using selected measures of similarity and test statistics. The
process involves separating collected RF-DNA fingerprints into training and
testing sets for ND = 4 ZigBee devices (Dev1, Dev2, Dev3 and Dev4). The
training emissions were used for device-specific model development for both
device classification and device ID verification. Device classification and verifi-
cation assessments were accomplished by projecting the testing RF fingerprints
into a mapped feature space derived through MDA model development and
generating measures of similarity using probability-based test statistics.

Multiple Discriminate Analysis Model Development. MDA is
an extension of the Fisher linear discriminant process for discriminating more
than two device classes (ND > 2). MDA reduces feature dimensionality by
projecting RF fingerprints into an ND − 1 dimensional subspace. The MDA
projection matrix W was developed using an iterative K-fold training process
with the goal of projecting higher-dimensional input fingerprint F data into a
lower dimensional mapped feature space such that the out-of-class separation
is maximized and the within-class spread is minimized [2]. The best perform-
ing projection matrix WB in the K-fold training process was retained and
used to project training fingerprints into the mapped feature space, where pro-
jected means and covariances were measured for each of the ND devices. The
means and covariances were used to develop an assumed multivariate Gaus-
sian distributed device specific model. The developed model shown as M in
Figure 2 comprises a projection matrix WB(SNR), device projected means
µi(SNR), and a pooled covariance matrix ΣP (SNR) where the parenthetical
signal-to-noise ratio (SNR) denotes that the model generally varies with SNR
and i = 1, 2, . . . , ND.
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Figure 2. Block diagram of device discrimination.

Maximum Likelihood Classification. Device classification was per-
formed using an ML classifier derived from Bayesian decision theory with the
testing RF fingerprints classified as affiliated with one of the ND possible de-
vices. For ML classification, the prior probabilities were assumed to be equal,
the costs uniform and the device likelihoods to have a multivariate Gaussian
distribution generated during MDA model development. The ML classification
process involved: (i) inputting a testing RF fingerprint Fj generated according
to Equation (3) for a collected emission from an unknown device Dj ; (ii) pro-
jecting Fj into the mapped feature space using fj = FjWB ; and (iii) associating
fj with the device yielding the maximum conditional likelihood probability:

Di : argmax
i

[

p(fj |Di)
]

(4)

where i = 1, 2, . . . , ND and p(fj |Di) is the conditional likelihood probability
that fingerprint fj belongs to device Di. This was done for all testing RF
fingerprints in order to assess the device classification performance.



52 CRITICAL INFRASTRUCTURE PROTECTION VII

Figure 3. Representative in-class and out-of-class probability mass functions.

Device ID Verification. The RF fingerprinting methodology used for de-
vice ID verification is consistent with the process used in [1, 7]. RF fingerprints
can authenticate the claimed bit-level identity of a device (e.g., the device wants
to access a network and has presented a MAC address, SIM number or IMEI
number to gain access). Since bit-level credentials can be replicated by rogue
devices, RF fingerprint verification provides a means to mitigate unauthorized
access attempts. Device ID verification was accomplished using a one-to-one
comparison of current versus claimed RF signatures. The similarity measure
or verification test statistic zV reflects how well the current and claimed RF
fingerprint identities match and is compared with a threshold tV to verify the
ID claimed by the device and grant or deny network access to the device.

Figure 3 shows representative in-class (unfilled) and out-of-class (filled) prob-
ability mass functions (PMFs) generated from test statistic zV and a fixed
threshold tV . The in-class probability is defined as p[zV |Ci, Dj ] where j = i,
Ci is the claimed device ID and Dj is the actual device. The out-of-class dis-
tribution was generated using zV for the case when an unknown device falsely
claims to be an authorized device, where the unknown device is: (i) a rogue
device (j ̸= 1, 2, . . . , ND); or (ii) an authorized device claiming the identity of
a different authorized device (j = 1, 2, . . . , ND). The out-of-class probability is
denoted as p[zV |Ci, Dj] where i ̸= j and i = 1, 2, . . . , ND.

Device ID verification was assessed using conventional ROC curve analy-
sis [3]. Varying the threshold tV and measuring the area under the curve for
each PMF enabled the determination of the true and false device ID verifica-
tion rates. The TVR is a measure of how well current RF fingerprints match
the true claimed ID and is the area under the in-class PMF when zV < tV .
The corresponding false verification rate (FVR) provides a measure of how
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Figure 4. Device ID verification ROC curves.

well current RF fingerprints match a false claimed ID and is the area under the
out-of-class PMF when zV < tV .

The threshold tV was varied and the corresponding device TVRs and FVRs
were used to generate ROC performance curves for 6 dB > 3 dB > 0 dB.
Figure 4 shows the variation in ROC curve performance as a function of three
arbitrarily selected SNR values. Representative performance points for various
thresholds (t1 < t2 < tV ) are shown to emphasize that the verification threshold
value dictates TVR and FVR performance.

2.3 Dimensional Reduction Analysis

The Fisher-based MDA process inherently masks the feature contribution
to the resulting discrimination performance, inhibiting the ability to determine
the features that have the greatest impact. The goal of DRA is to minimize
the number of RF fingerprint features while achieving the desired classification
accuracy. Identifying the features that provide the most significant contribution
to classification while removing less relevant features may be accomplished
using two techniques: (i) a pre-classification KS goodness-of-fit test [6]; and
(ii) a feature relevance ranking provided by GRLVQI processing [7].

The quantitative pre-classification feature reduction process was used to
identify and select the l most relevant features from the full-dimensional RF
feature set F prior to MDA/ML classification. The KS-test is a suitable option
for analyzing statistical feature differences and was used to quantify differences
in cumulative distribution functions between full-dimensional RF feature sets
from two devices. The KS-test results are presented as summed p-values from
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all pairwise combinations of the ND devices considered, where lower p-values
indicate a more significant difference between the data sets.

The second alternative to feature selection considered was GRLVQI pro-
cessing, which inherently provides an indication of feature relevance following
model development. The process was adopted entirely from previous research
that shows that GRLVQI is a powerful tool for performing device classification
and DRA [7, 8]. The GRLVQI process provided a relevance ranking for each
feature comprising the RF fingerprint at a specified SNR. The relevance rank-
ing value is the contribution of a particular feature to device separation within
the GRLVQI classification process. The higher the relevance value, the greater
the impact on class separation. Feature dimensional reduction was achieved
by selecting the top l features from the feature relevance ranking of the GR-
LVQI classifier. This GRLVQI DRA selected subset of features was used in the
MDA/ML device classification and ID verification processes.

3. Experimental Results

MDA training was accomplished using NSHR = 500 independent ZigBee
SHR responses collected from each location (CAGE, LOS and WALL) for each
device (Dev1, Dev2, Dev3 and Dev4). In addition, Nz = 5 independent, like-
filtered Monte Carlo noise realizations were added to the SHR responses for each
analysis SNR considered. Thus, for MDA training with ND = 4 devices, K-
fold generation of the best WB(SNR), µi(SNR), ΣP (SNR) and multivariate
Gaussian statistics of projected training fingerprints involved a total of NTNG =
500 (SHR) × 3 (locations) × 5 (Nz) = 7,500 independent realizations per device.
The classification and verification results were likewise based on NSHR = 500
testing fingerprints per location for each device and Nz = 5 noise realizations
per SNR, resulting in NTST = 7, 500 test realizations.

3.1 Device Classification (Full-Dimensional)

Full-dimensional RF fingerprints included features based on NC = 3 signal
characteristics (a, φ and f), NS = 3 statistical fingerprint features (σ2, γ and
κ), and NR + 1 = 81 regions, for a total fingerprint F comprising NF = 729
features as specified by Equation (3). Figure 5 shows the full-dimensional test-
ing classification performance for the hybrid location scenario (i.e., responses
from CAGE, LOS and WALL) at SNRs ranging from 0 to 24 dB. Note that a
performance benchmark of %C = 90% is achieved at SNR ≈ 10 dB, with all
the devices achieving %C = 80% or better classification.

3.2 DRA Feature Selection

Feature dimensional reduction analysis was subsequently performed to de-
termine the minimum number of features required to achieve the %C = 90%
benchmark. Feature relevance was determined by fixing the RF fingerprints
at SNR = 10 dB and performing a quantitative assessment on the NF = 729
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Figure 5. MDA/ML device classification performance.

full-dimensional features using the pre-classification KS-test feature selection
and the feature relevance ranking from the GRLVQI classifier.

Quantitative feature assessment enabled the identification and selection of
the most relevant subset of full-dimensional features. Figure 6 shows the
NF = 729 full-dimensional feature indices and relevance indicators for SNR
= 10 dB based on the pre-classification KS-test and the GRLVQI feature rele-
vance ranking. Note that lower KS-test p-values and higher GRLVQI λ-values
indicate greater relevance. The results at SNR = 10 dB correspond to the
cross-device average %C ≈ 90% shown in Figure 5.

3.3 Device Classification (DRA Performance)

Figure 7 shows the results of reducing the RF fingerprint features using the
pre-classification KS-test feature selection and the feature relevance ranking
from the GRLVQI classifier. For the KS-test, the top NF = 243 features to the
top NF = 50 features require SNR ≈ 10 to 17 dB to achieve the %C = 90%
classification benchmark. Note that the top NF = 25 features never reach the
%C = 90% benchmark. For the GRLVQI classifier, a range of SNR ≈ 10 to
29 dB is necessary to achieve 90% classification accuracy for the top NF = 243
features to the top NF = 25 features.

3.4 Device ID Verification (Authorized Devices)

Device ID verification was performed using a one-to-one comparison of the
current RF fingerprint versus claimed ID RF fingerprints. The current RF fin-
gerprint was compared with the stored reference fingerprint template associated
with the claimed bit-level identity. The stored reference fingerprint template
was created in the MDA training process using NTNG = 7, 500 independent
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Figure 6. DRA feature relevance indicators at SNR = 10 dB.

realizations for the ND = 4 authorized devices. The projected training finger-
prints were used to generate the in-class PMF constructed from the verification
test statistic zV . This test statistic zV was derived from the inherent MATLAB
classify function, which outputs a normalized conditional multivariate Gaussian
posterior probability given by:

zV =
p(fj |Di)

ND
∑

k=1
p(fj |Dk)

(5)
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(a) KS-test feature selection.
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Figure 7. MDA/ML device classification using DRA subsets.

where i = 1, 2, . . . , ND and fj is the current projected RF fingerprint claiming to
have an ID from device Di. The test statistic zV from Equation (5) was stored
when the projected fingerprint fj was actually from the claimed ID device.

Each designated authorized device has a stored RF signature template to
use when a testing input RF fingerprint is received and claims the ID of an
authorized device. In authorized device ID verification, the current testing RF
fingerprints were selected from a pool of ND authorized devices and claimed IDs
of authorized devices. The test statistic from Equation (5) for current testing



58 CRITICAL INFRASTRUCTURE PROTECTION VII

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Verification Rate (FVR)

Tr
ue

 V
er

ifi
ca

tio
n 

R
at

e 
(T

VR
)  

 Desired TVR 

Device 1
Device 2
Device 3
Device 4

(a) KS-test feature selection.
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(b) GRLVQI feature selection.

Figure 8. Authorized device ID verification for ND = 4 authorized devices.

fingerprints was used to create the out-of-class PMF. The resulting in-class and
out-of-class PMFs were used to produce device ID verification ROC curves.

Figure 8 shows the device ID verification performance for each of the ND = 4
authorized devices using a reduced feature set (NF = 50) selected with pre-
classification KS values and post-classification GRLVQI relevance rankings.
The resulting ID verification ROC curves were evaluated at SNR =18 dB
based on the classification performance benchmark (%C = 90%) for the re-
duced feature set (NF = 50). As seen in each plot, there is a device-dependent
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verification threshold tV such that all authorized device IDs can be verified at
TVR > 90% and FVR < 10% for both the methods considered.

3.5 Device ID Verification (Rogue Devices)

The use of RF fingerprints to reject rogue devices is demonstrated using
the same device ID verification process implemented for authorized devices.
In this case, the out-of-class PMFs were constructed from NU = 6 (Dev5,
Dev6, . . ., Dev10) unauthorized rogue device RF fingerprints collected from
the three locations (CAGE, LOS and WALL). A total of NTST = 1,000 (SHR)
× 1 (location) × 5 (Nz) = 5,000 previously unseen RF fingerprint realizations
were used for each NU device.

Rogue device rejection is an assessment of how well current RF fingerprints
selected from a pool of rogue (previously unseen and unauthorized) devices
match the claimed authorized device ID. The authorized device reference tem-
plate created in MDA training was used when a rogue testing input RF fin-
gerprint was received and claimed the ID of an authorized device. The test
statistic from Equation (5) for current rogue testing fingerprints was used to
create the out-of-class PMFs. The in-class PMF of each of the ND = 4 autho-
rized device stored templates was compared with the newly-generated rogue
scenario out-of-class PMF, producing four ROC curves (one for each claimed
authorized device ID). NU = 6 rogue devices were used in nine different rogue
device placements (three each located at CAGE, LOS and WALL) where each
rogue device claimed the identity of each of the ND = 4 authorized devices,
producing a total of 36 rogue scenarios.

Figure 9 presents the rogue rejection results for the device ID verification
process. Specifically, the figure shows the rogue device rejection for NU =
6 unauthorized devices spoofing the bit-level IDs of the ND = 4 authorized
devices (36 total scenarios). The assessment is based on the top ranked NF =
50 features with the KS-test and GRLVQI selected features. The grey ROC
curves correspond to scenarios where RAR < 10% is not achieved. Each case
includes 36 rogue scenarios corresponding to the feature dimensional reduction
method where the top NF = 50 feature sets selected were evaluated at SNR
= 18 dB. The results are plotted as the rogue accept rate (RAR) versus TVR,
where the rogue reject rate (RRR) is defined as RRR = 1 − RAR (higher
RAR reflects poorer security performance). As shown in Figure 9, KS-test
selected features perform similar to GRLVQI selected features in the case of
rogue rejection. When selecting a threshold such that TVR > 90%, the KS-
test feature set achieves an RRR > 90% in 29 of 36 rogue scenarios considered
while the GRLVQI selected features are successful in 28 of 36 scenarios (shown
as solid black ROC curves).

4. Conclusions

Unauthorized ZigBee network access is a serious concern in industrial con-
trol and building automation systems. RF fingerprinting techniques have the
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(a) KS-test feature selection.
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Figure 9. Rogue device rejection for NU = 6 unauthorized devices.

potential to identify rogue devices that spoof the bit-level credentials of au-
thorized devices. The experimental results demonstrate that ID verification
with dimensionally-efficient RF fingerprints can detect and reject unauthorized
rogue devices very effectively. The RF fingerprints were obtained using a di-
mensional reduction analysis process with relevant features identified by a pre-
classification KS-test process and a post-classification GRLVQI process.

The MDA-based device IDverificationprocess was demonstrated using ND =
4 authorized devices. Using RF fingerprints comprising DRA ≈ 93% of the
feature subset, the classification performance benchmark of %C = 90% was
achieved at SNR ≈ 18 dB for the KS-test and GRLVQI selected features, and
each method yielded a TVR greater than 90% and an FVR less than 10%



Dubendorfer, Ramsey & Temple 61

for all authorized devices. The KS-test feature set achieved a rogue reject
rate exceeding 90% in 29 of 36 rogue scenarios considered while the GRLVQI
selected features were successful in 28 of 36 scenarios.

Note that the views expressed in this paper are those of the authors and do
not reflect the official policy or position of the U.S. Air Force, U.S. Department
of Defense or the U.S. Government.
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