Uniform regular weighted graphs with large degree: Wigner's law, asymptotic freeness and graphons limit

Abstract : For each $N, let G N$ be a simple random graph on the set of vertices $[N ] = {1, 2,. .. , N }$, which is invariant by relabeling of the vertices. The asymptotic behavior as N goes to infinity of certain correlation functions furnishes informations on the asymptotic spectral properties of the adjacency matrix $A N of G N$. Denote by $d N = N × P({i, j} ∈ G N)$ and assume $d N , N − d → N →∞$ . If the correlation functions are small enough, the standardized empirical eigenvalue distribution of A N converges in expectation to the semicircular law and the matrix satisfies asymptotic freeness properties in the sense of free probability theory. We provide such estimates for uniform d N-regular graphs $G N,d N ,$ under the additional assumption that $| N 2 − d N − η √ d N | → N →∞$ for some $η > 0$. Our method applies also for simple graphs whose edges are labelled by i.i.d. random variables.
Type de document :
Pré-publication, Document de travail
2014
Liste complète des métadonnées


https://hal.inria.fr/hal-01458155
Contributeur : Camille Male <>
Soumis le : lundi 6 février 2017 - 17:31:34
Dernière modification le : jeudi 27 avril 2017 - 09:46:31
Document(s) archivé(s) le : dimanche 7 mai 2017 - 14:46:16

Fichier

Peche Male Arxiv.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01458155, version 1
  • ARXIV : 1410.8126

Collections

Citation

Camille Male, Sandrine Péché. Uniform regular weighted graphs with large degree: Wigner's law, asymptotic freeness and graphons limit. 2014. <hal-01458155>

Partager

Métriques

Consultations de
la notice

49

Téléchargements du document

12