W. D. Hoff, K. H. Jung, and J. L. Spudich, MOLECULAR MECHANISM OF PHOTOSIGNALING BY ARCHAEAL SENSORY RHODOPSINS, Annual Review of Biophysics and Biomolecular Structure, vol.26, issue.1, pp.223-58, 1997.
DOI : 10.1146/annurev.biophys.26.1.223

H. U. Ferris, The Mechanisms of HAMP-Mediated Signaling in Transmembrane Receptors, Structure, vol.19, issue.3, pp.378-85, 2011.
DOI : 10.1016/j.str.2011.01.006

J. Wang, J. Sasaki, A. Tsai, and J. L. Spudich, HAMP Domain Signal Relay Mechanism in a Sensory Rhodopsin-Transducer Complex, Journal of Biological Chemistry, vol.287, issue.25, pp.21316-21341, 2012.
DOI : 10.1074/jbc.M112.344622

M. K. Koch, W. F. Staudinger, F. Siedler, and D. Oesterhelt, Physiological Sites of Deamidation and Methyl Esterification in Sensory Transducers of Halobacterium salinarum, Journal of Molecular Biology, vol.380, issue.2, pp.285-302, 2008.
DOI : 10.1016/j.jmb.2008.04.063

A. A. Wegener, J. P. Klare, M. Engelhard, and H. J. Steinhoff, Structural insights into the early steps of receptor-transducer signal transfer in archaeal phototaxis, The EMBO Journal, vol.20, issue.19, pp.5312-5321, 2001.
DOI : 10.1093/emboj/20.19.5312

I. Y. Gushchin, V. I. Gordeliy, and S. Grudinin, Role of the HAMP Domain Region of Sensory Rhodopsin Transducers in Signal Transduction, Biochemistry, vol.50, issue.4, pp.574-580, 2010.
DOI : 10.1021/bi101032a

URL : https://hal.archives-ouvertes.fr/hal-00784550

M. V. Airola, K. J. Watts, A. M. Bilwes, and B. Crane, Structure of Concatenated HAMP Domains Provides a Mechanism for Signal Transduction, Structure, vol.18, issue.4, pp.436-484, 2010.
DOI : 10.1016/j.str.2010.01.013

A. A. Wegener, I. Chizhov, M. Engelhard, and H. J. Steinhoff, Time-resolved detection of transient movement of helix F in spin-labelled pharaonis sensory rhodopsin II, Journal of Molecular Biology, vol.301, issue.4, pp.881-91, 2000.
DOI : 10.1006/jmbi.2000.4008

C. Yang, O. Sineshchekov, E. N. Spudich, and J. L. Spudich, The Cytoplasmic Membrane-proximal Domain of the HtrII Transducer Interacts with the E-F Loop of Photoactivated Natronomonas pharaonis Sensory Rhodopsin II, Journal of Biological Chemistry, vol.279, issue.41, pp.42970-42976, 2004.
DOI : 10.1074/jbc.M406504200

S. Hippler-mreyen, Probing the Sensory Rhodopsin II Binding Domain of its Cognate Transducer by Calorimetry and Electrophysiology, Journal of Molecular Biology, vol.330, issue.5, pp.1203-1213, 2003.
DOI : 10.1016/S0022-2836(03)00656-9

V. I. Gordeliy, Molecular basis of transmembrane signalling by sensory rhodopsin II???transducer complex, Nature, vol.50, issue.6906, pp.484-491, 2002.
DOI : 10.1038/23512

R. Moukhametzianov, Development of the signal in sensory rhodopsin and its transfer to the cognate transducer, Nature, vol.54, issue.7080, pp.115-124, 2006.
DOI : 10.1038/nature04520

N. Kunishima, Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor, Nature, vol.407, pp.971-978, 2000.

I. Gushchin, Active State of Sensory Rhodopsin II: Structural Determinants for Signal Transfer and Proton Pumping, Journal of Molecular Biology, vol.412, issue.4, pp.591-600, 2011.
DOI : 10.1016/j.jmb.2011.07.022

URL : https://hal.archives-ouvertes.fr/hal-00766090

A. Royant, X-ray structure of sensory rhodopsin II at 2.1-A resolution, Proc. Natl. Acad. Sci. USA 98, pp.10131-10137, 2001.
DOI : 10.1073/pnas.181203898

H. Luecke, B. Schobert, J. K. Lanyi, E. N. Spudich, and J. L. Spudich, Crystal Structure of Sensory Rhodopsin II at 2.4 Angstroms: Insights into Color Tuning and Transducer Interaction, Science, vol.293, issue.5534, pp.1499-503, 2001.
DOI : 10.1126/science.1062977

J. P. Klare, E. Bordignon, M. Engelhard, and H. Steinhoff, Sensory rhodopsin II and bacteriorhodopsin: Light activated helix F movement, Photochemical & Photobiological Sciences, vol.3, issue.6, p.543, 2004.
DOI : 10.1039/b402656j

URL : http://hdl.handle.net/11858/00-001M-0000-0014-0B53-C

J. L. Spudich, O. A. Sineshchekov, and E. G. Govorunova, 41811 | DOI: 10 Mechanism divergence in microbial rhodopsins, Biochim. Biophys. Acta - Bioenerg, vol.7, issue.1837, pp.546-552, 1038.

K. Inoue, T. Tsukamoto, and Y. Sudo, Molecular and evolutionary aspects of microbial sensory rhodopsins, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1837, issue.5, pp.562-577, 2014.
DOI : 10.1016/j.bbabio.2013.05.005

J. P. Klare, E. Bordignon, M. Engelhard, and H. Steinhoff, Transmembrane signal transduction in archaeal phototaxis: The sensory rhodopsin II-transducer complex studied by electron paramagnetic resonance spectroscopy, European Journal of Cell Biology, vol.90, issue.9, pp.731-740, 2011.
DOI : 10.1016/j.ejcb.2011.04.013

E. N. Spudich, W. Zhang, M. Alam, and J. L. Spudich, Constitutive signaling by the phototaxis receptor sensory rhodopsin II from disruption of its protonated Schiff base-Asp-73 interhelical salt bridge, Proc. Natl. Acad. Sci. USA 94, pp.4960-4965, 1997.
DOI : 10.1073/pnas.94.10.4960

K. Edman, Early Structural Rearrangements in the Photocycle of an Integral Membrane Sensory Receptor, Structure, vol.10, issue.4, pp.473-482, 2002.
DOI : 10.1016/S0969-2126(02)00736-0

M. Hulko, The HAMP Domain Structure Implies Helix Rotation in Transmembrane Signaling, Cell, vol.126, issue.5, pp.929-969, 2006.
DOI : 10.1016/j.cell.2006.06.058

K. Nishikata, S. Fuchigami, M. Ikeguchi, and A. Kidera, Molecular modeling of the HAMP domain of sensory rhodopsin II transducer from Natronomonas pharaonis, BIOPHYSICS, vol.6, pp.27-36, 2010.
DOI : 10.2142/biophysics.6.27

M. Etzkorn, Complex Formation and Light Activation in Membrane-Embedded Sensory Rhodopsin II as Seen by Solid-State NMR Spectroscopy, Structure, vol.18, issue.3, pp.293-300, 2010.
DOI : 10.1016/j.str.2010.01.011

R. Seidel, The primary structure of sensory rhodopsin II: a member of an additional retinal protein subgroup is coexpressed with its transducer, the halobacterial transducer of rhodopsin II., Proc. Natl. Acad. Sci. USA 92, pp.3036-3076, 1995.
DOI : 10.1073/pnas.92.7.3036

E. Pebay-peyroula, A. Royant, E. M. Landau, and J. Navarro, Structural basis for sensory rhodopsin function, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1565, issue.2, pp.196-205, 2002.
DOI : 10.1016/S0005-2736(02)00569-2

M. Tirion, Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis, Physical Review Letters, vol.77, issue.9, pp.1905-1908, 1996.
DOI : 10.1103/PhysRevLett.77.1905

F. Tama, F. X. Gadea, O. Marques, and Y. H. Sanejouand, Building-block approach for determining low-frequency normal modes of macromolecules, Proteins: Structure, Function, and Genetics, vol.77, issue.1, pp.1-7, 2000.
DOI : 10.1002/1097-0134(20001001)41:1<1::AID-PROT10>3.0.CO;2-P

J. Lee, CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field, Journal of Chemical Theory and Computation, vol.12, issue.1, pp.405-413, 2016.
DOI : 10.1021/acs.jctc.5b00935

S. Jo, T. Kim, and W. Im, Automated Builder and Database of Protein/Membrane Complexes for Molecular Dynamics Simulations, PLoS ONE, vol.26, issue.9, p.880, 2007.
DOI : 10.1371/journal.pone.0000880.s001

M. J. Abraham, GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, vol.1, issue.2, pp.19-25, 2015.
DOI : 10.1016/j.softx.2015.06.001

E. Bordignon, Structural Analysis of a HAMP Domain: THE LINKER REGION OF THE PHOTOTRANSDUCER IN COMPLEX WITH SENSORY RHODOPSIN II, Journal of Biological Chemistry, vol.280, issue.46, pp.38767-38775, 2005.
DOI : 10.1074/jbc.M509391200

Y. Sudo, M. Iwamoto, K. Shimono, and N. Kamo, Pharaonis Phoborhodopsin Binds to its Cognate Truncated Transducer Even in the Presence of a Detergent with a 1:1 Stoichiometry??, Photochemistry and Photobiology, vol.268, issue.3, pp.489-94, 2001.
DOI : 10.1562/0031-8655(2001)074<0489:PPBTIC>2.0.CO;2

Y. Sudo, M. Yamabi, M. Iwamoto, K. Shimono, and N. Kamo, Interaction of Natronobacterium pharaonis Phoborhodopsin (Sensory Rhodopsin II) with its Cognate Transducer Probed by Increase in the Thermal Stability??, Photochemistry and Photobiology, vol.31, issue.5, pp.511-517, 2003.
DOI : 10.1562/0031-8655(2003)078<0511:IONPPS>2.0.CO;2

M. Doebber, Salt-driven Equilibrium between Two Conformations in the HAMP Domain from Natronomonas pharaonis: THE LANGUAGE OF SIGNAL TRANSFER?, Journal of Biological Chemistry, vol.283, issue.42, pp.28691-28701, 2008.
DOI : 10.1074/jbc.M801931200

P. S. Orekhov, Signaling and Adaptation Modulate the Dynamics of the Photosensoric Complex of Natronomonas pharaonis, PLOS Computational Biology, vol.83, issue.10, p.1004561, 2015.
DOI : 10.1371/journal.pcbi.1004561.s019

K. Nishikata, M. Ikeguchi, and A. Kidera, Comparative Simulations of the Ground State and the M-Intermediate State of the Sensory Rhodopsin II???Transducer Complex with a HAMP Domain Model, Biochemistry, vol.51, issue.30, pp.5958-5966, 2012.
DOI : 10.1021/bi300696b

K. S. Molnar, Cys-Scanning Disulfide Crosslinking and Bayesian Modeling Probe the Transmembrane Signaling Mechanism of the Histidine Kinase, PhoQ, Structure, vol.22, issue.9, pp.1239-51, 2014.
DOI : 10.1016/j.str.2014.04.019

S. D. Goldberg, G. D. Clinthorne, M. Goulian, and W. Degrado, Transmembrane polar interactions are required for signaling in the Escherichia coli sensor kinase PhoQ, Proc. Natl. Acad. Sci. USA, pp.8141-8147, 2010.
DOI : 10.1073/pnas.1003166107

J. E. Schultz and J. Natarajan, Regulated unfolding: a basic principle of intraprotein signaling in modular proteins, Trends in Biochemical Sciences, vol.38, issue.11, pp.538-583, 2013.
DOI : 10.1016/j.tibs.2013.08.005

J. S. Parkinson, G. L. Hazelbauer, and J. J. Falke, Signaling and sensory adaptation in Escherichia coli chemoreceptors: 2015 update, Trends in Microbiology, vol.23, issue.5, pp.257-266, 2015.
DOI : 10.1016/j.tim.2015.03.003

M. Caffrey and V. Cherezov, Crystallizing membrane proteins using lipidic mesophases, Nature Protocols, vol.83, issue.5, pp.706-737, 2009.
DOI : 10.1038/nprot.2009.31

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2732203

V. I. Borshchevskiy, E. S. Round, A. N. Popov, G. Büldt, and V. I. Gordeliy, X-ray-Radiation-Induced Changes in Bacteriorhodopsin Structure, Journal of Molecular Biology, vol.409, issue.5, pp.813-838, 2011.
DOI : 10.1016/j.jmb.2011.04.038

A. G. Leslie, The integration of macromolecular diffraction data, Acta Crystallographica Section D Biological Crystallography, vol.62, issue.1, pp.48-57, 2006.
DOI : 10.1107/S0907444905039107

P. Evans, Scaling and assessment of data quality, Acta Crystallographica Section D Biological Crystallography, vol.62, issue.1, pp.72-82, 2006.
DOI : 10.1107/S0907444905036693

A. Vagin and A. Teplyakov, : an Automated Program for Molecular Replacement, Journal of Applied Crystallography, vol.30, issue.6, pp.1022-1025, 1997.
DOI : 10.1107/S0021889897006766

P. D. Adams, : a comprehensive Python-based system for macromolecular structure solution, Acta Crystallographica Section D Biological Crystallography, vol.64, issue.2, pp.213-234, 2010.
DOI : 10.1107/S0907444909052925

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815670

M. D. Hartmann, A soluble mutant of the transmembrane receptor Af1503 features strong changes in coiled-coil periodicity, Journal of Structural Biology, vol.186, issue.3, pp.357-366, 2014.
DOI : 10.1016/j.jsb.2014.02.008

S. Grudinin and S. Redon, Practical modeling of molecular systems with symmetries, Journal of Computational Chemistry, vol.375, issue.9, pp.1799-1814, 2010.
DOI : 10.1002/jcc.21434

URL : https://hal.archives-ouvertes.fr/hal-00748028

W. L. Delano, The PyMOL Molecular Graphics System, Version 1.2r3pre