A Linear Multi-Layer Perceptron for Identifying Harmonic Contents of Biomedical Signals

Abstract : A linear Multi Layer Perceptron (MLP) is proposed as a new approach to identify the harmonic content of biomedical signals and to characterize them. This layered neural network uses only linear neurons. Some synthetic sinusoidal terms are used as inputs and represent a priori knowledge. A measured signal serves as a reference, then a supervised learning allows to adapt the weights and to fit its Fourier series. The amplitudes of the fundamental and high-order harmonics can be directly deduced from the combination of the weights. The effectiveness of the approach is evaluated and compared. Results show clearly that the linear MLP is able to identify in real-time the amplitudes of harmonic terms from measured signals such as electrocardiogram records under noisy conditions.
Type de document :
Communication dans un congrès
Harris Papadopoulos; Andreas S. Andreou; Lazaros Iliadis; Ilias Maglogiannis. 9th Artificial Intelligence Applications and Innovations (AIAI), Sep 2013, Paphos, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-412, pp.262-271, 2013, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-41142-7_27〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01459618
Contributeur : Hal Ifip <>
Soumis le : mardi 7 février 2017 - 13:05:12
Dernière modification le : mercredi 14 mars 2018 - 16:51:19
Document(s) archivé(s) le : lundi 8 mai 2017 - 14:19:13

Fichier

978-3-642-41142-7_27_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Thien Nguyen, Patrice Wira. A Linear Multi-Layer Perceptron for Identifying Harmonic Contents of Biomedical Signals. Harris Papadopoulos; Andreas S. Andreou; Lazaros Iliadis; Ilias Maglogiannis. 9th Artificial Intelligence Applications and Innovations (AIAI), Sep 2013, Paphos, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-412, pp.262-271, 2013, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-41142-7_27〉. 〈hal-01459618〉

Partager

Métriques

Consultations de la notice

42

Téléchargements de fichiers

38