Gene Prioritization for Inference of Robust Composite Diagnostic Signatures in the Case of Melanoma

Abstract : An integrated dataset originating from multi-modal datasets can be used to target underlying causal biological actions that through a systems level process trigger the development of a disease. In this study, we use an integrated dataset related to cutaneous melanoma that comes from two separate sets (microarray and imaging) and the application of data imputation methods. Our goal is to associate low-level biological information, i.e. gene expression, to imaging features, that characterize disease at a macroscopic level. Using an average Spearman correlation measurement of a gene to a total of 31 imaging features, a set of 1701 genes were sorted based on their impact to imaging features. Top correlated genes, comprising a candidate set of gene biomarkers, were used to train an artificial feed forward neural network. Classification performance metrics reported here showed the proof of concept for our gene selection methodology which is to be further validated.
Type de document :
Communication dans un congrès
Harris Papadopoulos; Andreas S. Andreou; Lazaros Iliadis; Ilias Maglogiannis. 9th Artificial Intelligence Applications and Innovations (AIAI), Sep 2013, Paphos, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-412, pp.311-317, 2013, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-41142-7_32〉
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01459627
Contributeur : Hal Ifip <>
Soumis le : mardi 7 février 2017 - 13:05:29
Dernière modification le : vendredi 1 décembre 2017 - 01:16:34
Document(s) archivé(s) le : lundi 8 mai 2017 - 14:10:14

Fichier

978-3-642-41142-7_32_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Ioannis Valavanis, Kostantinos Moutselos, Ilias Maglogiannis, Aristotelis Chatziioannou. Gene Prioritization for Inference of Robust Composite Diagnostic Signatures in the Case of Melanoma. Harris Papadopoulos; Andreas S. Andreou; Lazaros Iliadis; Ilias Maglogiannis. 9th Artificial Intelligence Applications and Innovations (AIAI), Sep 2013, Paphos, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-412, pp.311-317, 2013, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-41142-7_32〉. 〈hal-01459627〉

Partager

Métriques

Consultations de la notice

68

Téléchargements de fichiers

18