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Abstract. An integrated dataset originating from multi-modal datasets can be 

used to target underlying causal biological actions that through a systems level 

process trigger the development of a disease. In this study, we use an integrated 

dataset related to cutaneous melanoma that comes from two separate sets 

(microarray and imaging) and the application of data imputation methods. Our 

goal is to associate low-level biological information, i.e. gene expression, to 

imaging features, that characterize disease at a macroscopic level. Using an 

average Spearman correlation measurement of a gene to a total of 31 imaging 

features, a set of 1701 genes were sorted based on their impact to imaging 

features. Top correlated genes, comprising a candidate set of gene biomarkers, 

were used to train an artificial feed forward neural network. Classification 

performance metrics reported here showed the proof of concept for our gene 

selection methodology which is to be further validated.  

Keywords: multi-modal, microarray, gene, imaging feature, data imputation, 
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1   Introduction 

  The use of biomedical data from different sources, so called multi-modal datasets, is 

of known importance in the context of personalized medicine and future electronic 

health record management. Different data linked together can help towards a holistic 

approach. Especially, in cancer research data from clinical studies (age, sex, size or 

grade of tumor size) can be integrated with gene expression data from microarray 

experiments [1].  

Integration can take place at different levels, e.g. across sub-systems 

(musculoskeletal, cardiovascular, etc.), or across temporal and dimensional scales 

(body, organ, tissue, cell) [2]. In the context of Virtual Physiological Human (VPH), 

an integrated framework should promote the interconnection of predictive models 



pervading different scales, with different methods, characterized by different 

granularity. An integrated framework could produce system level information and 

enable formulation and testing of hypotheses, facilitating a holistic approach [3-4]. 

The framework should make it possible to interconnect predictive models defined at 

different scales, with different methods, and with different levels of detail, into 

systemic networks that provide a concretization of those systemic hypotheses [2,5].  

An integrated framework studying multi-modal datasets can target underlying 

causal biological actions that through a systems level disease manifestation are 

translated to macroscopic disease related phenotypes. Motivated by this, in this study 

we aim to associate low-level biological information, i.e. gene expression, to imaging 

features using two different datasets related to cutaneous melanoma. The datasets 

used here come from two different sets of subjects that are described either by 

molecular features (gene expression) or imaging features. These sets have been 

previously used by authors in [3] to produce an integrated data set by applying data 

imputation methods to handle missing values in each of the sets. We actually re-use 

the produced dataset and our aim here is to find a robust gene signature that in whole 

influences the set of imaging features in the derived integrated dataset. We thus use 

spearman correlation measurements to derive the gene subsets that mostly affect the 

imaging features. The selected molecular features are then used to construct and 

evaluate artificial neural network classifiers that are trained to distinguish cutaneous 

melanoma cases from controls.  Results show that the statistical selection of gene 

features using the multi-modal features’ correlation can provide a robust signature 

that generalizes well when inputted to the classifiers.  

2   Dataset 

Two different datasets, one corresponding to microarray data and one to imaging 

data, were used. Since both sets are related to cutaneous melanoma, a brief 

introduction is firstly done in this section to the disease and then the two sets are 

described. Finally, the integrated dataset and how it has been produced is described.   

 

2.1 Cutaneous Melanoma  

Cutaneous Melanoma (CM) is considered a complex multigenic and multifactorial 

disease that involves both environmental and genetic factors. CM tumorigenesis is 

often explained as a progressive transformation of normal melanocytes to nevi that 

subsequently develop into primary cutaneous melanomas. The molecular pathways 

involved have been although little studied [6] and despite that genomic markers or 

gene signatures have been defined for various cancers (such as breast cancer), there 

has been no similar progress for malignant melanoma. Genomic studies that have 

been performed on CM exploit different microarray technological platforms applied 

in highly heterogeneous patient sets. These differences hurdle significantly 

comparisons, yielding cohorts of reduced total size and diversity.  

Regarding the clinical diagnosis of melanoma, several approaches for analysis and 

diagnosis of lesions exist that use images for the analysis and diagnosis of lesions. 

The Menzies scale, the Seven-point scale, the Total Dermoscopy Score based on the 



ABCD rule, and the ABCDE rule (Asymmetry, Border, Color, Diameter, Evolution) 

are some examples of these.  As human interpretation of image content is fraught with 

contextual ambiguities, advanced computerized techniques can assist doctors in the 

diagnostic process [7]. 

 

2.2 Microarray data 

The microarray dataset was taken from the Gene Expression Omnibus (GEO) [8], 

GDS1375. RNA isolated from 45 primary melanoma, 18 benign skin nevi, and 7 

normal skin tissue specimens was used for gene expression analysis, using the 

Affymetrix Hu133A microarray chip containing 22,000 probe sets. Signal intensities 

were globally scaled so that the average intensity equals 600. The gene expression 

values across all categories were log transformed, and the mean values of all genes in 

the normal skin were calculated. Subsequently, the mean gene vector concerning the 

normal skin categories was subtracted from all replicate vectors of the other two 

categories (due to log-transformation the by normal skin category was replaced with a 

subtraction). The initial signal intensities provided thus ratios of differential 

expression, calculated by dividing the signal intensities of each category by the 

respective gene value of the normal category.  The differentially expressed gene 

values of the melanoma versus skin, and nevi versus skin, were then analyzed. An 

FDR for multiple testing adjustment, p-value 0.001 and a 2-fold change thresholds 

were applied and thus 1701 genes were statistically preselected.  

 
2.3 Imaging data 

The dataset derived from skin lesion images contained 972 instances of nevus skin 

lesions and 69 melanoma cases. The following three types of features were analyzed: 

Border Features which cover the A and B parts of the ABCD-rule of dermatology, 

Color Features which correspond to the C rules, and Textural Features which are 

based on D rules [9]. A total of 31 features were produced (one feature was removed 

due to having zero variation across the samples). The relevant pre-processing for all 

features is described in [9].  

 
2.4 Integrated Set 

Microarray and imaging data sets were unified into one dataset using missing value 

imputation, as already described in [3]. The dataset prior to missing value imputation 

corresponded to a sparse matrix containing 1104 samples (benign or malignant 

samples, either from microarray data or imaging data) and a total of 1732 features 

(differential gene expression or imaging features). Prior to missing value imputation, 

examples originating from microarray dataset included missing values for imaging 

features, and examples originating from imaging dataset included missing values for 

gene expression measurements. A uniform missing value imputation methodology 

was used and a final integrated dataset (including no missing values) was produced. 

The procedure was followed twice, and two integrated datasets (Set 1 and Set 2) were 

created. One dataset (Set 1) was used for a triple scope: i) the selection of genes based 

on their correlation to imaging features ii) training an artificial neural network 

classifier to distinguish disease status (benigh vs. malignant) when inputted by 

selected genes or alternatively by all imaging features (see Section 4) and iii) testing 



the classifier using 3-fold cross validation. Set 2 was used as an independent testing 

set for testing the classifier.      

3   Methods 

Using the pool of 1701 statistically pre-selected genes, we identified here the genes 

that are mostly correlated with the imaging features in whole. For correlation 

measurements, Spearman correlation was used (-1 implies negative correlation, 1 

implies positive correlation). For a gene i, its correlation to an imaging feature j was 

calculated and marked as Corri,j (1≤ i≤ 1701, 1≤ j≤ 31, -1≤  Corri,j ≤ 1). The average 

values of absolute correlation measurements of gene i to all N=31 imaging features 

was used as a total correlation measurement (Total_Corri ) of gene i to imaging 

features (eq. 1). All genes were sorted in descending order according to total 

correlation and the most correlated genes were used as input to a feed-forward 

artificial neural network (ANN) that was trained and evaluated in distinguishing 

malignant from benign samples. Serially, the most correlated gene was used as input, 

than the two most correlated ones and the three most correlated ones. Top 5 and top 

10 genes were also used as input, while the total set of imaging features was also used 

as input to the ANN for comparison reasons. 
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The ANN used here was trained using the back-propagation algorithm for 1000 

epochs with a learning rate equal to 0.3 and momentum equal to 0.2. The hidden layer 

used sigmoid activation function and contained ((num of features+num of classes)/2 + 

1) nodes. ANN was trained using Set 1 and classifier’s performance in terms of total 

accuracy (number of samples correctly classified), and class sensitivity (number of 

true positives in a class that were correctly classified in this class) was measured 

using this set and 3-cross validation.  The ANN was also trained using the whole Set 1 

and was then used to classify samples in Set 2 and performance metrics were 

calculated as well. The classification and testing protocol was implemented within the 

stand-alone Rapidminer platform [10-11]. 

4   Results and Discussion 

Table 1 presents the performance metrics (total accuracy, benign class sensitivity, 

malignant class sensitivity) measured when differential gene expression of various 

subsets of genes from the pool of 1701 were fed to ANN. Specifically, ANN was fed 

by the top 1, top 2, top 3, top 5 and top 10 genes according to total correlation  



 

Table 1. Performance metrics obtained by ANN when fed by top gene(s) based on correlation to imaging features or the set of imaging 

features.   

ANN input features (gene(s) based 
on correlation to imaging features 

or the set of imaging features) 
(vector dimension) 

Set 1 - Total 

Accuracy (3-cross 
validation) 

Set 1 - Benign            

Class Sensitivity (3-
cross validation) 

Set 1 - Malignant            
Class Sensitivity 

(3-cross 
validation) 

Set 2 – 

Total  
Accuracy 

Set 2 - 
Benign            

Class 
Sensitivity 

Set 2 - 
Malignant           

Class 
Sensitivity 

Top 1 gene   (n=1) 96.47 97.88 83.33 95.74 99.6 62.82 

Top 2 genes (n=2) 98.73 99.49 92.11 98.37 99.49 88.6 

Top 3 genes (n=3) 99.46 99.9 95.61 98.82 99.6 92.11 

Top 5 genes (n=5) 99.95 100 95.61 99.55 99.7 98.25 

Top 10 gens (n=10) 100 100 100 99.64 99.7 99.12 

Gene with the median Total_Corr 
value (n=1) 89.58 93.13 58.77 93.48 100 36.84 

Gene Least correlated (n=1) 83.79 87.98 47.37 89.67 100 0 

Imaging Features (n=31) 59.69 61.62 42.98 89.67 100 0 



measurements to imaging features as described above (Table 1, Rows 2-6). 

Performance of ANN when inputted by the worst gene according to total correlation 

measurement, the gene featured the median total correlation measurement (sorted as 

top 50% in the sorted gene list) and the total of imaging features are reported as well 

for comparison reasons (Table 1, Rows 7-9) . 

Results show that top genes can provide very good performance metrics and when 

serially adding top genes performance gets better. Eventually,  almost all samples can 

be classified correctly when top 10 genes are used and this happens also for Set 2 that 

was not used in training process (see further discussion below). In general, little worst 

performance is obtained when ANN is evaluated in Set 2, while sensitivity 

measurements for malignant class are worse than the corresponding ones for benign 

class. This has to do with the much greater abundance of benign samples in the 

integrated dataset. The performance obtained when genes less correlated to imaging 

features are fed to ANN are much lower, showing the proof of concept for selecting 

gene features by taking into account their impact to imaging features. Results in Table 

1 show also that the performance metrics obtained here by the top genes in terms of 

their correlation to imaging features are much higher than the ones obtained when 

imaging features are fed to the ANN. This shows that selected genes, actually being 

involved in the biological actions beneath melanoma phenotype, could comprise a 

molecular signature and a potential set of molecular biomarkers/predictors for the 

disease. This feature set describing low-level biomedical information seems to 

perform better than the set of macroscopic imaging features, but of course this is to be 

cross-validated by further tests.      

It is to be noted that performances presented here may comprise over estimations 

of the ANN behavior and predicting ability. This has to do with the fact that similar 

patterns of features may exist within Set 1 and Set 2 or across these two sets, since 

missing data imputation has taken place to a great extent as regards the signal 

population of the integrated dataset (features and disease phenotype). This could not 

be avoided since the integrated dataset has originated from two separate datasets 

(microarray and imaging), while a multi-modal dataset based on a single set of 

subjects forming an epidemiological cohort yet remains elusive to the best of our 

knowledge. However, further cross-validation tests and the application of more 

missing value imputation methods represent tangible goals for future work.  
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