On Centered and Compact Signal and Image Derivatives for Feature Extraction

Abstract : A great number of Artificial Intelligence applications are based on features extracted from signals or images. Feature extraction often requires differentiation of discrete signals and/or images in one or more dimensions. In this work we provide two Theorems for the construction of finite length (finite impulse response -FIR) masks for signal and image differentiation of any order, using central differences of any required length. Moreover, we present a very efficient algorithm for implementing the compact (implicit) differentiation of discrete signals and images, as infinite impulse response (IIR) filters. The differentiator operators are assessed in terms of their spectral properties, as well as in terms of the performance of corner detection in gray scale images, achieving higher sensitivity than standard operators. These features are considered very important for computer vision systems. The computational complexity for the centered and the explicit derivatives is also provided.
Type de document :
Communication dans un congrès
Harris Papadopoulos; Andreas S. Andreou; Lazaros Iliadis; Ilias Maglogiannis. 9th Artificial Intelligence Applications and Innovations (AIAI), Sep 2013, Paphos, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-412, pp.318-327, 2013, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-41142-7_33〉
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01459628
Contributeur : Hal Ifip <>
Soumis le : mardi 7 février 2017 - 13:05:31
Dernière modification le : vendredi 1 décembre 2017 - 01:16:34
Document(s) archivé(s) le : lundi 8 mai 2017 - 14:23:47

Fichier

978-3-642-41142-7_33_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Konstantinos Delibasis, Aristides Kechriniotis, Ilias Maglogiannis. On Centered and Compact Signal and Image Derivatives for Feature Extraction. Harris Papadopoulos; Andreas S. Andreou; Lazaros Iliadis; Ilias Maglogiannis. 9th Artificial Intelligence Applications and Innovations (AIAI), Sep 2013, Paphos, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-412, pp.318-327, 2013, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-41142-7_33〉. 〈hal-01459628〉

Partager

Métriques

Consultations de la notice

488

Téléchargements de fichiers

35