V. Vovk, A. Gammerman, and G. Shafer, Algorithmic Learning in a Random World, 2005.

V. Vovk, On-line confidence machines are well-calibrated, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings., pp.187-196, 2002.
DOI : 10.1109/SFCS.2002.1181895

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Vanderlooy, L. Van-der-maaten, and I. Sprinkhuizen-kuyper, Off-Line Learning with Transductive Confidence Machines: An Empirical Evaluation, Machine Learning and Data Mining in Pattern Recognition, pp.310-323, 2007.
DOI : 10.1007/978-3-540-73499-4_24

S. S. Ho and H. Wechsler, Query by transduction. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.30, issue.9, pp.1557-1571, 2008.

R. Laxhammar and G. Falkman, Conformal prediction for distribution-independent anomaly detection in streaming vessel data, Proceedings of the First International Workshop on Novel Data Stream Pattern Mining Techniques, StreamKDD '10, p.4755, 2010.
DOI : 10.1145/1833280.1833287

T. Bellotti, Z. Luo, and A. Gammerman, Strangeness Minimisation Feature Selection with Confidence Machines, In: Intelligent Data Engineering and Automated Learning IDEAL, pp.978-985, 2006.
DOI : 10.1007/11875581_117

S. S. Ho and H. Wechsler, A martingale framework for detecting changes in data streams by testing exchangeability, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.12, pp.2113-2127, 2010.

M. Kukar, Quality assessment of individual classifications in machine learning and data mining, Knowledge and Information Systems, vol.76, issue.3, pp.364-384, 2006.
DOI : 10.1007/s10115-005-0203-z

A. Lambrou, H. Papadopoulos, and A. Gammerman, Reliable Confidence Measures for Medical Diagnosis With Evolutionary Algorithms, IEEE Transactions on Information Technology in Biomedicine, vol.15, issue.1, pp.93-99, 2011.
DOI : 10.1109/TITB.2010.2091144

H. Shao, B. Yu, and J. H. Nadeau, Strangeness-based feature weighting and classification of gene expression profiles, Proceedings of the 2008 ACM symposium on Applied computing , SAC '08, pp.1292-1296, 2008.
DOI : 10.1145/1363686.1363985

F. Li and H. Wechsler, Open set face recognition using transduction, IEEE Trans. Pattern Anal. Mach. Intell, vol.27, issue.11, pp.1686-1697, 2005.

M. Dashevskiy and Z. Luo, Network Traffic Demand Prediction with Confidence, IEEE GLOBECOM 2008, 2008 IEEE Global Telecommunications Conference, pp.1453-1457, 2008.
DOI : 10.1109/GLOCOM.2008.ECP.284

S. Sonnenburg, M. L. Braun, C. S. Ong, S. Bengio, L. Bottou et al., The need for open source software in machine learning, Journal of Machine Learning Research, vol.8, pp.2443-2466, 2007.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine learning in python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

V. Balasubramanian, R. Gouripeddi, S. Panchanathan, J. Vermillion, A. Bhaskaran et al., Support vector machine based conformal predictors for risk of complications following a coronary drug eluting stent procedure, In: Computers in Cardiology, pp.5-8, 2009.