V. Vovk, A. Gammerman, and G. Shafer, Algorithmic Learning in a Random World, 2005.

T. Melluish, C. Saunders, I. Nouretdinov, and V. Vovk, Comparing the Bayes and Typicalness Frameworks, Lecture Notes in Computer Science, vol.2167, pp.360-371, 2001.
DOI : 10.1007/3-540-44795-4_31

V. Vovk, I. Nouretdinov, and A. Gammerman, On-line predictive linear regression, The Annals of Statistics, vol.37, issue.3, pp.1566-1590, 2009.
DOI : 10.1214/08-AOS622

A. Gammerman and V. Vovk, Hedging Predictions in Machine Learning: The Second Computer Journal Lecture, The Computer Journal, vol.50, issue.2, pp.151-172, 2007.
DOI : 10.1093/comjnl/bxl065

H. Papadopoulos and H. Haralambousm, Reliable prediction intervals with regression neural networks, Neural Networks, vol.24, issue.8, pp.842-851, 2011.
DOI : 10.1016/j.neunet.2011.05.008

H. Papadopoulos, V. Vovk, and A. Gammerman, Regression Conformal Prediction with Nearest Neighbours, J. Artif. Intell. Res. (JAIR), vol.40, pp.815-840, 2011.

A. Lambrou, H. Papadopoulos, I. Nouretdinov, and A. Gammerman, Reliable Probability Estimates Based on Support Vector Machines for Large Multiclass Datasets. Artificial Intelligence Applications and Innovations -AIAI International Workshops: AIAB, Proceedings. II. Halkidiki, Greece, pp.182-191, 2012.

V. Vovk, On-Line Regression Competitive with Reproducing Kernel Hilbert Spaces
DOI : 10.1007/11750321_43

N. Cristianini and J. Shawe-taylor, An Introduction to Support Vector Machines and other kernel-based learning methods, 2000.
DOI : 10.1017/CBO9780511801389

M. Liu, D. Zhang, and D. Shen, Alzheimer's Disease Neuroimaging Initiative. Ensemble sparce classification of Alzheimer's disease, Neuroimage, vol.60, pp.2012-1106

D. Zhang, Y. Wang, L. Zhou, H. Yuan, and D. Shen, Multimodal classification of Alzheimer's disease and mild cognitive impairment, NeuroImage, vol.55, issue.3, pp.856-867, 2011.
DOI : 10.1016/j.neuroimage.2011.01.008

C. Destriux, B. Fischl, A. Dale, and E. Halgren, Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature, NeuroImage, vol.53, issue.1, pp.1-15, 2010.
DOI : 10.1016/j.neuroimage.2010.06.010

J. Ye, M. Farnum, E. Yang, R. Verbeeck, V. Lobanov et al., Sparse learning and stability selection for predicting MCI to AD conversion using baseline ADNI data, BMC Neurology, vol.73, issue.4, pp.46-56, 2012.
DOI : 10.1212/WNL.0b013e3181af79e5

P. S. Aisen, R. C. Petersen, M. C. Donohue, A. Gamst, R. Raman et al., Alzheimer's Disease Neuroimaging Initiative . Clinical Core of the Alzheimer's Disease Neuroimaging Initiative: progress and plans, Alzheimers Dement, pp.239-246, 2010.

A. Vilatela, M. E. Lopez-lopez, M. Yescas-gomez, and P. , Genetics of Alzheimer???s Disease, Archives of Medical Research, vol.43, issue.8, pp.2012-622
DOI : 10.1016/j.arcmed.2012.10.017

I. Nouretdinov, S. G. Costafreda, A. Gammerman, A. Chervonenkis, V. Vovk et al., Machine learning classification with confidence: Application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression, NeuroImage, vol.56, issue.2, pp.56-2011
DOI : 10.1016/j.neuroimage.2010.05.023