Conformity-Based Transfer AdaBoost Algorithm

Abstract : This paper proposes to consider the region classification task in the context of instance-transfer learning. The proposed solution consists of the conformal algorithm that employs a nonconformity function learned by the Transfer AdaBoost algorithm. The experiments showed that our approach results in valid class regions. In addition the conditions when instance transfer can improve learning are empirically derived.
Type de document :
Communication dans un congrès
Harris Papadopoulos; Andreas S. Andreou; Lazaros Iliadis; Ilias Maglogiannis. 9th Artificial Intelligence Applications and Innovations (AIAI), Sep 2013, Paphos, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-412, pp.401-410, 2013, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-41142-7_41〉
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01459635
Contributeur : Hal Ifip <>
Soumis le : mardi 7 février 2017 - 13:05:52
Dernière modification le : vendredi 1 décembre 2017 - 01:16:34
Document(s) archivé(s) le : lundi 8 mai 2017 - 14:21:49

Fichier

978-3-642-41142-7_41_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Shuang Zhou, Evgueni Smirnov, Haitham Ammar, Ralf Peeters. Conformity-Based Transfer AdaBoost Algorithm. Harris Papadopoulos; Andreas S. Andreou; Lazaros Iliadis; Ilias Maglogiannis. 9th Artificial Intelligence Applications and Innovations (AIAI), Sep 2013, Paphos, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-412, pp.401-410, 2013, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-41142-7_41〉. 〈hal-01459635〉

Partager

Métriques

Consultations de la notice

117

Téléchargements de fichiers

67