H. R. Li, Reliability and Validity in Qualitative Research, 2009.

T. Melluish, C. Saunders, I. Nouretdinov, and V. Vovk, Comparing the Bayes and Typicalness Frameworks, 12th European Conference on Machine Learning, pp.360-371, 2001.
DOI : 10.1007/3-540-44795-4_31

W. Elazmeh, N. Japkowicz, and S. Matwin, Evaluating Misclassifications in Imbalanced Data, 17th European Conference on Machine Learning, pp.126-137, 2006.
DOI : 10.1007/11871842_16

F. Li, H. Mi, Y. , and F. , Exploring the stability of feature selection for imbalanced intrusion detection data, 2011 9th IEEE International Conference on Control and Automation (ICCA), pp.750-754, 2011.
DOI : 10.1109/ICCA.2011.6138076

G. Shafer and V. Vovk, A tutorial on conformal prediction, Journal of Machine Learning Research, vol.9, pp.371-421, 2005.

V. Vovk, A. Gammerman, and A. G. Shafer, Algorithmic Learning in a Random World, 2005.

C. Saunders, A. Gammerman, and V. Vovk, Transduction with confidence and credibility, 16th International Joint Conference on Artificial Intelligence, pp.722-726, 1999.

A. Gammerman and V. Vovk, Kolmogorov Complexity: Sources, Theory and Applications, The Computer Journal, vol.42, issue.4, pp.252-255, 1999.
DOI : 10.1093/comjnl/42.4.252

T. Bellotti, Z. Luo, and A. Gammerman, QUALIFIED PREDICTIONS FOR MICROARRAY AND PROTEOMICS PATTERN DIAGNOSTICS WITH CONFIDENCE MACHINES, International Journal of Neural Systems, vol.15, issue.04, pp.247-258, 2005.
DOI : 10.1142/S012906570500027X

J. Vega, A. Murari, and A. Pereira, Accurate and reliable image classification by using conformal predictors in the TJ-II Thomson scattering, Review of Scientific Instruments, vol.81, issue.10, pp.10-18, 2010.
DOI : 10.1063/1.3478689

H. Papadopoulos, . V. Vovk, and A. Gammerman, Regression Conformal Prediction with Nearest Neighbours, J. Artif. Intell. Res. (JAIR), vol.40, pp.815-840, 2011.

H. H. Papadopoulos, Reliable prediction intervals with regression neural networks, Neural Networks, vol.24, issue.8, pp.842-851, 2011.
DOI : 10.1016/j.neunet.2011.05.008

F. Li, J. Kosecka, and H. Wechsler, Strangeness based feature selection for part based recognition. Computer Vision and Pattern Recognition Workshop, pp.22-22, 2006.

H. Papadopoulos, Inductive Conformal Prediction: Theory and Application to Neural Networks, Tools in Artificial Intelligence, issue.18, pp.315-330, 2008.
DOI : 10.5772/6078

W. Huazhen, L. Chengde, Y. Fan, and Z. Jinfa, An online Algorithm with confidence for Real-Time Fault Detection, Journal of Information and Computational Science, vol.6, issue.1, pp.305-313, 2009.

Y. Fan, W. Huazhen, M. Hong, and C. Weiwen, Using random forest for reliable classification and cost-sensitive learning for medical diagnosis, Bmc Bioinformatics, vol.10, issue.22, pp.14-18, 2009.

D. Devetyarov, I. Nouretdinov, and B. Burford, Conformal predictors in early diagnostics of ovarian and breast cancers, Progress in Artificial Intelligence, pp.1-13, 2012.
DOI : 10.1007/s13748-012-0021-y

N. V. Chawla, K. W. Bowyer, and L. O. Hall, SMOTE: synthetic minority over-sampling technique, Journal of Artificial Intelligence Research, vol.16, issue.1, pp.321-357, 2002.

J. W. Grzymala and J. Stefanowski, A Comparison of Two Approaches to Data Mining from Imbalanced Data, Journal of Intelligent Manufacturing, vol.160, issue.3, pp.565-573, 2005.
DOI : 10.1007/s10845-005-4362-2

S. Yen, L. , and Y. , Cluster-based under-sampling approaches for imbalanced data distributions, Expert Systems with Applications, vol.36, issue.3, pp.5718-5727, 2009.
DOI : 10.1016/j.eswa.2008.06.108

H. Ji and H. X. Zhang, Classification with Local Clustering in Imbalanced Data Sets, Advanced Materials Research, vol.219, issue.220, pp.151-155, 2011.
DOI : 10.4028/www.scientific.net/AMR.219-220.151

J. Wu, H. Xiong, C. , and J. , COG: local decomposition for rare class analysis, Data Mining and Knowledge Discovery, vol.6, issue.1, pp.191-220, 2010.
DOI : 10.1007/s10618-009-0146-1

W. Prachuabsupakij and N. Soonthornphisaj, Clustering and combined sampling approaches for multi-class imbalanced data classification Advances in Information Technology and Industry Applications, pp.717-724, 2012.

W. Huazhen, L. Chengde, F. Y. Xueqin, and H. , Hedged predictions for traditional Chinese chronic gastritis diagnosis with confidence machine, Computers in Biology and Medicine, vol.39, issue.5, pp.425-432, 2009.

P. Lyman and C. Georgakis, Plant-wide control of the Tennessee Eastman problem, Computers & Chemical Engineering, vol.19, issue.3, pp.321-331, 1995.
DOI : 10.1016/0098-1354(94)00057-U

A. Kulkarni, V. Jayaraman, and B. Kulkarni, Knowledge incorporated support vector machines to detect faults in Tennessee Eastman Process, Computers & Chemical Engineering, vol.29, issue.10, pp.29-2128, 2005.
DOI : 10.1016/j.compchemeng.2005.06.006