Kalman Filter and SVR Combinations in Forecasting US Unemployment

Abstract : The motivation for this paper is to investigate the efficiency of a Neural Network (NN) architecture, the Psi Sigma Network (PSN), in forecasting US unemployment and compare the utility of Kalman Filter and Support Vector Regression (SVR) in combining NN forecasts. An Autoregressive Moving Average model (ARMA) and two different NN architectures, a Multi-Layer Perceptron (MLP) and a Recurrent Network (RNN), are used as benchmarks. The statistical performance of our models is estimated throughout the period of 1972-2012, using the last seven years for out-of-sample testing. The results show that the PSN statistically outperforms all models’ individual performances. Both forecast combination approaches improve the statistical accuracy, but SVR outperforms substantially the Kalman Filter.
Type de document :
Communication dans un congrès
Harris Papadopoulos; Andreas S. Andreou; Lazaros Iliadis; Ilias Maglogiannis. 9th Artificial Intelligence Applications and Innovations (AIAI), Sep 2013, Paphos, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-412, pp.506-515, 2013, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-41142-7_51〉
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01459642
Contributeur : Hal Ifip <>
Soumis le : mardi 7 février 2017 - 13:06:11
Dernière modification le : vendredi 1 décembre 2017 - 01:16:34
Document(s) archivé(s) le : lundi 8 mai 2017 - 14:17:47

Fichier

978-3-642-41142-7_51_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Georgios Sermpinis, Charalampos Stasinakis, Andreas Karathanasopoulos. Kalman Filter and SVR Combinations in Forecasting US Unemployment. Harris Papadopoulos; Andreas S. Andreou; Lazaros Iliadis; Ilias Maglogiannis. 9th Artificial Intelligence Applications and Innovations (AIAI), Sep 2013, Paphos, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-412, pp.506-515, 2013, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-41142-7_51〉. 〈hal-01459642〉

Partager

Métriques

Consultations de la notice

36

Téléchargements de fichiers

123