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Abstract. This work describes the use of a quantum-inspiredugionary algo-
rithm (QIEA-R) to construct a weighted ensemble efinal network classifiers
for adaptive learning in concept drift problemseTiroposed algorithm, named
NEVE (meaning Neuro-EVolutionary Ensemble), uses@EA-R to train the
neural networks and also to determine the besthi®ifpr each classifier be-
longing to the ensemble when a new block of dataes. After running eight
simulations using two different datasets and petfiog two different analysis
of the results, we show that NEVE is able to l¢gamdata set and to quickly re-
spond to any drifts on the underlying data, indigathat our model can be a
good alternative to address concept drift problams.also compare the results
reached by our model with an existing algorithmaroe-+.NSE, in two differ-
ent nonstationary scenarios.

Keywords. adaptive learning, concept drift, neuro-evolutignensemble,
quantum-inspired evolution.

1 INTRODUCTION

The ability for a classifier to learn from incremaiyt updated data drawn from a
nonstationary environment poses a challenge tofidié of computational intelli-
gence. Moreover, the use of neural networks asifiexs makes the problem even
harder, as neural networks are usually seen as tbat must be retrained with the
whole set of instances learned so far when a nemicbf data becomes available.

In order to cope with that sort of problem, a dféesmust, ideally, be able to [1]:

« Track and detect any sort of changes on the uridgrtiata distribution;

e Learn with new data without the need to presentvthele data set again for the
classifier;

« Adjust its own parameters in order to address #ieaded changes on data;

« Forget what has been learned when that knowledge isnger useful for classify-
ing new instances.



A more successful approach consists in using aenalole of classifiers. This kind
of approach uses a group of different classifiexsrder to be able to track changes on
the environment. Several different models of endemhave been proposed on the
literature[2, 3, 4]:

* Ensembles that create new classifiers to each newkcbf data and weight
classifiers according to their accuracy on receta;da

* Unweighted ensembles which can cope with new dait lielongs to a concept
different from the most recent training data;

« Ensembles that are able to discard classifiersegstitacome inaccurate or when a
concept drift is detected.

Most models using weighted ensembles determinevéights for each classifier us-
ing some sort of heuristics related to the amo@imhistakes the classifier does when
working with the most recent data [5]. Althoughpirinciple any classifier can be used
to build the ensembles, the ones which are mostrammty used are decision trees,
neural networks and naive Bayes [6].

In this work, we present an approach based on haataorks which are trained
by means of a quantum-inspired evolutionary algaritQuantum-inspired evolution-
ary algorithms [7-11] are a class of estimatiordistribution algorithms which pre-
sent, for several benchmarks, a better perform&émceombinatorial and numerical
optimization when compared to their canonical genalgorithm counterparts. We
also use the quantum-inspired evolutionary algoritfor numerical optimization
(QIEA-R) to determine the voting weights for eadéssifier which is part of the en-
semble. Every time a new chunk of data arrivegwa classifier is trained on this new
data set and all the weights are optimized in ofdethe ensemble to improve its
performance on classifying this new set of data.

Therefore, we present a new approach for adaptiaming, consisting of an en-
semble of neural networks, named NEVE (Neuro-Evohary Ensemble). To evalu-
ate its performance and accuracy, we used 2 diffetatasets to execute several sim-
ulations, varying the ensemble settings and anajylsow do they influence the final
result. We also compare the results of NEVE with tbsults of Learn++.NSE algo-
rithm [2], an existing approach to address adapgéaening problems.

This paper is organized in four additional sectid®sction 2 details the Quantum-
Inspired Neuro-Evolutionary algorithm and the pregd model, the Neuro-
Evolutionary Ensemble Classifier. Section 3 presemtd discusses the results of the
experiments. Finally, section 4 concludes this pamel present some possible future
works.

2 The Proposed M odel

2.1 TheQuantum-Inspired Neuro-Evolutionary M odel

Neuro-evolution is a form of machine learning thaes evolutionary algorithms to
train artificial neural networks. This kind of modslparticularly interesting for rein-
forcement learning problems, where the availabitfyinput-output pairs is often
difficult or impossible to obtain and the assessnmurtiow good the network per-



forms is made by directly measuring how well it gdetes a predefined task. As
training the weights in a neural network is a nimedr global optimization problem,
it is possible to minimize the error function byane of using an evolutionary algo-
rithm approach.

The quantum-inspired evolutionary algorithm is assl of “estimation of distribu-
tion algorithm” (EDA) that has a fast convergenc®,ausually, provides a better
solution, with fewer evaluations than the tradiibgenetic algorithms [3, 6]. In this
model, quantum-inspired genes are represented blapility density functions
(PDF) which are used to generate classical indaliglthrough an observation opera-
tor. After being observed, the classical individuare evaluated, as in traditional
genetic algorithms, and, by means of using fitneésrination, a set of quantum-
inspired operators are applied to the quantum iddais, in order to update the in-
formation they hold in such a way that on the rgederations, better individuals will
have a better chance to be selected. Further sletaihow this optimization method
works can be found in [7-11].

Based on this algorithm, the proposed quantum-iadpieuro-evolutionary model
consists in a neural network (a multilayer percapt(MLP)) and a population of
individuals, each of them encoding a different agunfation of weights and biases for
the neural network. The training process occurbuiiding one MLP for each classi-
cal individual using the genes from this individ@al weights and biases. After that,
the full training data set (or the set of task®&¢operformed) is presented to the MLP
and the average error regarding the data setdslatd for each MLP. This average
error is used as the fitness for each individuab@ated to that MLP, which allows
the evolutionary algorithm to adjust itself and raamn to the next generation, when
the whole process will be repeated until a stogldam is reached.

This subsection presented the quantum-inspiredorewuslutionary model. This
model will be the basis for the algorithm propogethis paper, to be presented in the
next subsection.

2.2 NEVE: The Neuro-Evolutionary Ensemble Classifier

To some applications, such as those that use ttetanss, the strategy of using sim-
pler models is most appropriate because there raapantime to run and update an
ensemble. However, when time is not a major congarnthe problem requires high
accuracy, an ensemble is the natural solution. greatest potential of this strategy
for detecting drifts is the ability of using diffamt forms of detection and different
sources of information to deal with the variousatypf change [4].

One of the biggest problems in using a single flasga neural network, for ex-
ample) to address concept drift problems is thag¢rthe classifier learns a dataset
and then we need it to learn a new one, the classifust be retrained with all data,
or else it will “forget” everything already learne@®therwise, using the ensemble,
there is no need to retrain it again, becausenit'iain” the previous knowledge and
still learn new data.

Hence, in order to be able to learn as new chufhk&i arrive, we implemented
an ensemble with neural networks that are trainedrbevolutionary algorithm, pre-



sented in section 2.1. This approach makes thevdriseuseful for online reinforce-
ment learning, for example. The algorithm workslaswn in figure 3 and each step is
described in detail on the next paragraphs.

On step 1 we create the empty ensemble with a finedesize equal ts. When
the first chunk of data is received, a neural netvimtrained by means of the QIEA-
R until a stop condition is reached (for exampte, humber of evolutionary genera-
tions or an error threshold). If the number of sifisrs in the ensemble is smaller than
s, then we simply add this new classifier to the eride. This gives the ensemble the
ability to learn the new chunk of data without hmayio parse old data. If the ensem-
ble is already full, we evaluate each classifietr@new data set and we remove the
one with the highest error rate (including the rewe, which means the new classifier
will only become part of the ensemble if its errate is smaller than the error rate of
one of the classifiers already in the ensemble)s ghies the ensemble, the ability to
forget about data which is not needed anymore.

W e

fier using the QIEA-R and a MLP and calculate it’s error E' over the data

of classifiers =g) then

Calculate t rror E; for each classifier ¢; in the ensemble
11) If (E' > maz
A) Replace the ifier with maz(E;) by the new classifier

te the ensemt

e the voting weights w; for each

data D;

classifier in the ensemble using the last chunk of

Fig. 1. The neuro-evolutionary ensemble training alganmith

Finally, we use the QIEA-R to evolve a voting weifr each classifier. Optimizing
the weights allows the ensemble to adapt quicklgudden changes on the data, by
giving higher weights to classifiers better adagtethe current concepts governing
the data. The chromosome that encodes the weigis#sohe gene for each voting
weight, and the population is evolved using thegifecation error as the fithess func-
tion. It is important to notice that when the figst data chunks are received, the en-
semble size is smaller than its final size and ttheschromosome size is also smaller.
From the s data chunk on, the chromosome sizerwillain constant and will be
equal tos.

In this work, we used only binary classifiers budréhis no loss of generality and
the algorithm can also be used with any numbedasses. For the binary classifier,
we discretize the neural network’s output as “1™dr" and the voting process for
each instance of data is made by summing the NMNtgub multiplied by its voting
weight. In other words, the ensemble’s output foe @nstancek from the i-th data
chunk is given by:

P(Dikj' — Z U-'j‘fj(Dik}

j=0

)



whereP(Diy) is the ensemble’s output for the data instadg&ew; is the weight of
the j-th classifier and;(Diy) is the output of the j-th classifier for that datstance. If
P(Di) < 0, we assume the ensemble’s output is “-1'P(Di) > 0, we assume the
ensemble’s output is “1”. P(Di) = 0, we choose a class randomly.

3 Experimental Results

3.1 Datasets Description

In order to check the ability of our model on léagndata sets with concept drifts, we
used two different data sets (SEA Concepts and d¢&hr also used at [2]) upon
which we performed several simulations in differscgnarios.

The SEA Concepts was developed by [12]. The datasetists of 50000 random
points in a three-dimensional feature space. Tawifes are in the [0; 10] domain but
only two of the three features are relevant to reitge the output class. Class labels
are assigned based on the sum of the relevantésatand are differentiated by com-
paring this sum to a threshold.

Nebraska dataset, also available at [13], preserdsmpilation of daily weather
measurements from over 9000 weather stations watélly the U.S. National Oce-
anic and Atmospheric Administration since 1930syjuling a wide scope of weather
trends. As a meaningful real world dataset, [2]adenl the Offutt Air Force Base in
Bellevue, Nebraska, for this experiment due t@itensive range of 50 years (1949—
1999) and diverse weather patterns, making it agteym precipitation
classification/prediction drift problem. Class labare based on the binary indica-
tor(s) provided for each daily reading of rain: 3p#sitive (rain) and 69% negative
(no rain). Each training batch consisted of 30 damfdays), with corresponding test
data selected as the subsequent 30 days. Thusatiner is asked to predict the next
30 days’ forecast, which becomes the training datde next batch. The dataset in-
cluded 583 consecutive “30-day” time steps covehgears.

3.2  Running Details

On each simulation, we used a fixed topology forrtheral networks consisting of
3 inputs for SEA Concepts dataset and 8 inputiN&hraska dataset, representing the
input variables for each dataset. In both datasetsjsed 1 output, and we varied the
number of the neurons for the hidden layer. Eaalrare has a hyperbolic tangent
activation function and, as mentioned before, tipuat is discretized as “-1” or “1” if
the output of the neuron is negative or positiespectively. The evolutionary algo-
rithm trains each neural network for 100 generatidrne quantum population has 10
individuals and the classical population 20. Thessover rate is 0:9 (refer to [8, 9]
for details on the parameters). The same paramaterssed for evolving the weights
for the classifiers. The neural network weights biases and the ensemble weights
are allowed to vary between -1 and 1 as those satethe ones who have given the
best results on some pre-evaluations we have made.

The first experiment was conducted in order to wata the influence of the varia-
tion of the parameters values in the results (numolb¢he hidden layer neurons and



the size of the ensemble). We used 4 differentigardtions for each dataset. After
running 10 simulations for each configuration, werfprmed some an Analysis of
Variance (ANOVA) [14]. In order to use ANOVA, wested the Normality assump-
tion for the noise term with Shapiro-Wilk’s test0]2and the homogeneity of vari-
ances with Bartlett’'s test [14]. All the statistigarocedures were conducted in R
package [15], admitting a significance level of 5%.

The second experiment, in turn, aimed to comparedbults found by NEVE and
Learn++.NSE algorithms and we used, for each datse best configuration found
by first experiment (ensemble size and number affores at hidden layer values).
After running one simulation for each dataset, wedenstatistical comparisons be-
tween the results found by NEVE and Learn++.NSEoritigms. The results of
Learn++.NSE can be found at [2]. Then, to evallM®/E we made 10 runs for each
dataset used, due to the stochastic optimizatigorithm used to train NEVE. Based
on these runs, we calculate some statistical paeasé¢mean, standard deviation,
etc.) that were used to compute the Welch t-tefttd evaluate which algorithm had,
in average, the best performance in test phase.ndhmality assumption necessary
for Welch t-test was verified using Shapiro-Willstt¢16]. All the statistical analyses
were conducted in R statistical package [15].

3.3  First Experiment

Based on the past subsections, we made 40 sirmgatising SEA dataset and 40
simulations using Nebraska dataset, using 4 diftecenfigurations on each dataset.
Table 1 displays number of neurons at hidden layer ensemble size with different
levels (5 and 10) and the output (average errtegshphase for 10 runs) for each con-
figuration.

In order to evaluate which configuration providedignificant lower error, we
have to perform multiple comparisons between tlselte of each configuration. For
each dataset if we decide to use t-test [14] fangle, we have to realize 6 compari-
sons between the configurations, and thus, theghitity that all analysis will be
simultaneous correct is substantially affectecthia way, to perform a simultaneous
comparison between all configurations we fitted ree-wvay Analysis of Variance
(ANOVA) [14] for each dataset, described by:

Yi=p + Ch+egj; & ~ N(0,09) (1)

where Yij is the i-th ouput for the j-th configuiat, p is the global mean, CFj is the
run configuration with j-levels (j =1,2,3,4) for@adataset (A, B, C and D, and E, F,
G, H, for SEA and Nebraska respectively) ant the noise term, Normal distributed
with mean zero and constant variane®.(If CF is statistically significant, then some
configuration demonstrated an average error diftefeom the others. To verify
which configuration has the average error less titaar configuration we used Tuk-
ey's test [14].



Table 1. Results for SEA and Nebraska dataset.

SEA dataset

Neurons Ensemble Config Error in test phase

Number Size Mean Std. dev.
10 10 A 24.99% 0.17%
5 5 B 24.88% 0.19%
10 5 C 25.06% 0.21%
5 10 D 24.75% 0.17%

Nebraska dataset

Neurons Ensemble Config Error in test phase

Number Size Mean Std. dev.
10 10 E 32.30% 0.48%
5 5 F 32.85% 0.43%
10 5 G 33.04% 0.37%
5 10 H 32.10% 0.46%

Then, we performed the analysis for both datasdteahibit the main results in
Table 2.

Table 2. Results for SEA and Nebraska dataset.
ANOVA - SEA dataset

Method Test Statistic p-value
Bartlett's test 0.4443 0.9309
Config 5.4360 0.0035
Shapiro-Wilk's test 0.9260 0.2137

ANOVA - Nebraska dataset

Method Test Statistic p-value
Bartlett's test 0.6537 0.8840
Config 11.5900 < 0.0001
Shapiro-Wilk's test 0.9708 0.3803

Analyzing the results displayed in Table Ill, inthaatasets the errors variance is
homogeneous (Bartlett’s test, p-value > 0.05). Aferifying these two assumptions
(Normal distribution and homogeneity of variance, fitted the one-way ANOVA.
In both datasets, some configurations (A, B, C @rfdr SEA, and E, F, G and H for
Nebraska) demonstrated an average error different the others (p-value < 0.05).
In addition, in both fitted models, the noise tefallows a Normal distribution
(Shapiro-Wilk's test, p-value > 0.05).

In order to identify which configuration performeid, average, better than other,
we made Tukey's test for difference of means. T@nhbeesent the results of this anal-

ysis.

Table 3. Tukey's test for SEA and Nebraska dataset.

SEA dataset | Nebraska dataset




Mean . Mean
difference p-value | - config difference
A-B 0.11% 0.5665 E-F -0.55% 0.0145
A-C -0.07% 0.8018 E-G -0.74% 0.0013
A-D 0.24% 0.0317 | E-H 0.20% 0.8849
B-C -0.18% 0.1399 F-G -0.19% 0.7434
B-D 0.13% 0.4010 F-H 0.75% 0.0014
C-D 0.31% 0.0029 | G-H 0.94% 0.0001

Config p-value

It seems that in SEA dataset the D configuratiorfopmed significantly better
than A and C, although its results is not statidlycdifferent than configuration B. In
Nebraska the E and H configurations obtained eneaisures substantially lower than
F and G. In fact, we can choose the configuraticsmshe best configuration to SEA
and H to Nebraska dataset, considering the fixedrpeters displayed in table Il. This
choice is based on two criterias: lower averagereand computational cost to train
these models.

3.4  Second Experiment.

Aiming to enable a better comparison with the ressaf the algorithm Learn +.
NSE [2] in SEA Concepts dataset, we used 200 blotk&e 25 to evaluate the algo-
rithm in the test phase. The best configuratiorvipresly achieved was 5 neurons in
hidden layer and the size of the ensemble equal(gee table 4). Also, with the re-
sults of Learn +. NSE in Nebraska dataset, we padd similarly to that used in [2].
The best configuration previously achieved was &Qrans in hidden layer and the
size of the ensemble equal to 10. Then, NEVE aratrze+t.NSE results were dis-
played in Table 4.

Table4. Results of SEA and Nebraska experiments.

Datase Algorithm Mean Standard Deviation
SEA NEVE 98.21% 0.16%
Learn++.NSE (SVNV 96.80% 0.20%
Nebraska NEVE 68.57% 0.46%
Learn++.NSE (SVI 78.80% 1.00%

As can be seem, the mean accuracy rate of Learn$E.iN lower than the best
configuration of NEVE, and thus this differencestsitistically significant (tcrit = -
41.07, p-value < 0.0001), demonstrating that NE\&rformed better in the test
phase on SEA Concepts dataset.

However, in Nebraska the mean accuracy rate of NEBVBwer than the best
configuration of Learn++.NSE, and thus this diffeze is statistically significant (tcrit
= 18.26, p-value < 0.0001), demonstrating that NEd#Eformed better, in average,
than Learn++.NSE. Figures 4 and 5 illustrates theate on each test block obtained
by NEVE on SEA and Nebraska, respectively.
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4 Conclusions and Future Works

This paper presented a model that uses an ensafbtural networks trained by a
quantum-inspired evolutionary algorithm to learrtadaets (possibly with concept
drifts) incrementally. We analyzed the ability dfetmodel using two different da-
tasets and conducting two different experimentshinfirst experiment, we found a
good configuration for both datasets and demorstrabw the number of neurons
and the ensemble size affect the average erroupeadby the model. As stated in the
results, the ensemble size affected almost twostimere the results of NEVE than
the number of neurons. In the second experimeatNt&BVE algorithm have demon-
strated a better performance in SEA dataset cordgarkearn++.NSE and yet lower
accuracy when comparing with Learn++.NSE in Nebaatktaset.

Although the NEVE algorithm have demonstrated fatisry performance for the
datasets used in the analysis of this study,striengly recommended to perform fur-
ther tests - using different configurations, diéier datasets and performing different
analysis - to confirm the results presented here.al§o intend in the future to contin-
ue this work, analyzing other existing approackash as [17] and [18], and perform-
ing new experiments in comparison with these aheroalgorithms. We still need to
investigate other factors related to QIEA-R fineriing (genetic operators, population
size, etc.).
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