S. H. Bach and M. A. Maloof, Paired Learners for Concept Drift, 2008 Eighth IEEE International Conference on Data Mining, pp.23-32, 2008.
DOI : 10.1109/ICDM.2008.119

M. Baena-garcía, J. Del-campo-´-avila, R. Fidalgo, A. Bifet, R. Gavaldà et al., Early drift detection method, ECML PKDD 2006 Fourth International Workshop on Knowledge Discovery from Data Streams, 2006.

T. G. Dietterich, Ensemble Methods in Machine Learning. MULTIPLE CLASSI- FIER SYSTEMS Lecture Notes in Computer Science, pp.1-15, 2000.

R. Elwell and R. Polikar, Incremental Learning of Concept Drift in Nonstationary Environments, IEEE Neural Networks Council, pp.1517-1548, 2011.
DOI : 10.1109/TNN.2011.2160459

J. Gama, P. Medas, G. Castillo, and P. Rodrigues, Learning with Drift Detection, Advances in Artificial Intelligence SBIA, pp.286-295, 2004.
DOI : 10.1007/978-3-540-28645-5_29

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

E. Hazan and C. Seshadhri, Efficient learning algorithms for changing environments, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, pp.393-400, 2009.
DOI : 10.1145/1553374.1553425

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Jacobs, C. R. Shalizi, and A. Clauset, Adapting to Non-stationarity with Growing Expert Ensembles, Tech. rep, 2010.

P. Kadlec and B. Gabrys, Local learning-based adaptive soft sensor for catalyst activation prediction, AIChE Journal, vol.22, issue.5, pp.1288-1301, 2011.
DOI : 10.1002/aic.12346

J. Z. Kolter and M. A. Maloof, Dynamic weighted majority: An ensemble method for drifting concepts, The Journal of Machine Learning Research, vol.8, pp.2755-2790, 2007.
DOI : 10.1109/icdm.2003.1250911

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Kolter and M. Maloof, Using additive expert ensembles to cope with concept drift, Proceedings of the 22nd international conference on Machine learning , ICML '05, pp.449-456, 1990.
DOI : 10.1145/1102351.1102408

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. Littlestone and M. Warmuth, The Weighted Majority Algorithm, Information and Computation, vol.108, issue.2, pp.212-261, 1994.
DOI : 10.1006/inco.1994.1009

L. L. Minku and X. Yao, DDD: A New Ensemble Approach for Dealing with Concept Drift, IEEE Transactions on Knowledge and Data Engineering, vol.24, issue.4, pp.619-633, 2012.
DOI : 10.1109/TKDE.2011.58

A. Narasimhamurthy and L. Kuncheva, A framework for generating data to simulate changing environments, Proceedings of the 25th IASTED International Multi- Conference: artificial intelligence and applications, pp.384-389, 2007.

D. Ruta and B. Gabrys, Classifier selection for majority voting, Information Fusion, vol.6, issue.1, pp.63-81, 2005.
DOI : 10.1016/j.inffus.2004.04.008

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. C. Schlimmer and R. H. Granger, Incremental learning from noisy data, Machine Learning, vol.14, issue.3, pp.317-354, 1986.
DOI : 10.1007/BF00116895

L. Shapley and B. Grofman, Optimizing group judgmental accuracy in the presence of interdependencies, Public Choice, vol.9, issue.3, pp.329-343, 1984.
DOI : 10.1007/BF00118940

K. O. Stanley, Learning concept drift with a committee of decision trees, 2003.

V. G. Vovk, Aggregating strategies) 20. ? Zliobait? e, I., Kuncheva, L.I.: Theoretical Window Size for Classification in the Presence of Sudden Concept Drift, COLT '90 Proceedings of the third annual workshop on Computational learning theory, pp.371-386, 1990.
DOI : 10.1016/b978-1-55860-146-8.50032-1