Exploiting Machine Learning for Predicting Nodal Status in Prostate Cancer Patients

Abstract : Prostate cancer is the second cause of cancer in males. The prophylactic pelvic irradiation is usually needed for treating prostate cancer patients with Subclinical Nodal Metestases. Currently, the physicians decide when to deliver pelvic irradiation in nodal negative patients mainly by using the Roach formula, which gives an approximate estimation of the risk of Subclinical Nodal Metestases.In this paper we study the exploitation of Machine Learning techniques for training models, based on several pre-treatment parameters, that can be used for predicting the nodal status of prostate cancer patients. An experimental retrospective analysis, conducted on the largest Italian database of prostate cancer patients treated with radical External Beam Radiation Therapy, shows that the proposed approaches can effectively predict the nodal status of patients.
Type de document :
Communication dans un congrès
Harris Papadopoulos; Andreas S. Andreou; Lazaros Iliadis; Ilias Maglogiannis. 9th Artificial Intelligence Applications and Innovations (AIAI), Sep 2013, Paphos, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-412, pp.61-70, 2013, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-41142-7_7〉
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01459665
Contributeur : Hal Ifip <>
Soumis le : mardi 7 février 2017 - 13:07:33
Dernière modification le : vendredi 1 décembre 2017 - 01:16:33
Document(s) archivé(s) le : lundi 8 mai 2017 - 14:13:20

Fichier

978-3-642-41142-7_7_Chapter.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Mauro Vallati, Berardino Bari, Roberto Gatta, Michela Buglione, Stefano Magrini, et al.. Exploiting Machine Learning for Predicting Nodal Status in Prostate Cancer Patients. Harris Papadopoulos; Andreas S. Andreou; Lazaros Iliadis; Ilias Maglogiannis. 9th Artificial Intelligence Applications and Innovations (AIAI), Sep 2013, Paphos, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-412, pp.61-70, 2013, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-41142-7_7〉. 〈hal-01459665〉

Partager

Métriques

Consultations de la notice

94

Téléchargements de fichiers

16