
HAL Id: hal-01460607
https://inria.hal.science/hal-01460607

Submitted on 7 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Automating Video File Carving and Content
Identification

York Yannikos, Nadeem Ashraf, Martin Steinebach, Christian Winter

To cite this version:
York Yannikos, Nadeem Ashraf, Martin Steinebach, Christian Winter. Automating Video File Carving
and Content Identification. 9th International Conference on Digital Forensics (DF), Jan 2013, Orlando,
FL, United States. pp.195-212, �10.1007/978-3-642-41148-9_14�. �hal-01460607�

https://inria.hal.science/hal-01460607
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Chapter 14

AUTOMATING VIDEO FILE CARVING
AND CONTENT IDENTIFICATION

YorkYannikos, NadeemAshraf,Martin SteinebachandChristian Winter

Abstract The massive amount of illegal content, especially images and videos,
encountered in forensic investigations requires the development of tools
that can automatically recover and analyze multimedia data from seized
storage devices. However, most forensic analysis processes are still done
manually or require continuous human interaction. The identification of
illegal content is particularly time consuming because no reliable tools
for automatic content classification are currently available. Addition-
ally, multimedia file carvers are often not robust enough – recovering
single frames of video files is often not possible if some of the data
is corrupted or missing. This paper proposes the combination of two
forensic techniques – video file carving and robust hashing – in a single
procedure that can be used for the automated recovery and identifica-
tion of video content, significantly speeding up forensic investigations.

Keywords: Automated forensic procedures, video file carving, robust hashing

1. Introduction

The amount of contraband image and video files has increased dras-
tically over the past decade. As a result, forensic investigators need
sophisticated tools to help recover and analyze image and video content
from evidentiary sources. However, the identification of illegal content is
a hard problem, and no reliable tools for automatic content classification
are currently available. Thus, each multimedia file has to be inspected
manually during a forensic investigation.

File carving is an advanced technique for recovering deleted data from
storage devices. It works independently of the underlying file system,

196 ADVANCES IN DIGITAL FORENSICS IX

enabling the recovery of deleted data that has not already been over-
written.

Most audio and video files (e.g., MPEG files) are streams of data un-
like WAV files, images and non-multimedia data. These streams consist
of many frames and the corresponding frame headers can be used as the
starting points for file carving. This makes it possible to extract indi-
vidual chunks of multimedia streams when portions of the streams are
already overwritten.

After multimedia data is recovered, it is necessary to conduct a time-
consuming inspection and search for evidentiary data. Content classifi-
cation techniques using blacklisting/whitelisting and robust hashing are
often used by forensic investigators. Since blacklisting/whitelisting ap-
proaches are mostly based on cryptographic hashing, they have high false
negative rates. On the other hand, robust hashing is a promising ap-
proach for detecting copies of multimedia data after content-preserving
changes such as lossy compression or format conversion.

This paper proposes the combination of two forensic techniques –
video file carving and robust hashing – in a single procedure that can
be used for the automated recovery and identification of video content.
It focuses on carving video files encoded using the MPEG video format.
The procedure identifies, extracts and decodes single intracoded frames
(I-frames) of MPEG video data from raw data sets in a robust manner
that allows the partial recovery of frames with missing or corrupted data.
Robust hashes of all the decoding results (i.e., image data) are generated
and then compared with the hashes in a reference database (blacklist)
to identify similarities with known illegal content. This procedure fa-
cilitates automated searches and recovery of video content, significantly
speeding up forensic investigations.

2. File Carving

File carving is the process of extracting file fragments from a byte
stream without file system information. This technique is mostly used
to recover data from unallocated space on a hard disk. A file carver
typically uses file header and footer information to identify the beginning
and end of a file. Everything that lies in between a file header and footer
is assumed to belong to a single file, which is then “carved” out and
restored. Common file carvers that use header and footer information
include PhotoRec [5], Scalpel [11] and Foremost [13]. However, if the file
to be recovered is fragmented, i.e., it is not stored sequentially, but is
split up into two or more parts and distributed throughout the storage
area, file carving becomes difficult.

Yannikos, Ashraf, Steinebach & Winter 197

A study by Garfinkel [3] noted that, although hard disks typically ex-
hibit low levels of fragmentation, the larger files tend to be fragmented.
Since multimedia video files (e.g., AVI and MPEG files) and high res-
olution images (e.g., from digital cameras) are usually large, a higher
percentage of them should be fragmented. In fact, Garfinkel discovered
that about 17% of MPEG files and 20% of AVI files are fragmented.

Several approaches have been proposed to handle file fragmentation
during file carving. One approach is bi-fragment gap carving [3], a tech-
nique that validates file contents with gaps in between them. However,
this technique only works for files with no more than two fragments and
with small gaps.

Pal and Memon [10] developed a graph-theoretic approach for file
carving that employs hypothesis testing for fragmentation point detec-
tion. The approach is effective at recovering fragmented JPEG files.
However, models and weighting techniques have to be developed for all
the file types of interest.

2.1 Video File Carving

Most of the available carving strategies and implementations are not
robust enough to handle multimedia files with several missing blocks.
This is because missing blocks make it practically impossible to decode
the data.

Since audio and video data are usually stored and transmitted as
streams, the stream properties can be leveraged to support more robust
data recovery and analysis. Multimedia streams comprise frames, each
of which has a header followed by the actual data content. A frame
header usually contains enough information to allow the calculation of
the frame size, which helps determine the starting position of the next
frame. This facilitates multimedia file parsing, fragmentation detection
and partial recovery.

Relatively little work has been done on carving methods for video
file recovery. Yoo, et al. [18] have developed an AVI file carving ap-
proach that works by parsing AVI file format information. They have
also proposed similar approaches for MP3 and WAV files, and for NTFS
compressed files. However, they assume that all the media files are
stored sequentially and they only consider data cut-offs, disregarding
file fragmentation with two or more fragments.

The Netherlands Forensics Institute has developed Defraser, an open
source tool for video data carving [14]. Defraser can carve multime-
dia files such as MPEG-1/2, WMV and MP4. It can also extract and
view single frames of MPEG-1 data. However, Defraser relies on a valid

198 ADVANCES IN DIGITAL FORENSICS IX

MPEG-1 structure and is unable to handle small occurrences of frag-
mentation and missing data in specific file areas.

3. Content Identification

The identification of illegal multimedia content is an important task
for forensic investigators. The typical approach is to manually inspect
all the multimedia data found on a seized storage device. Automated
approaches are necessary because manual inspection is very time con-
suming and is prone to the accidental overlooking of evidence and exon-
erating content.

Blacklisting and whitelisting are often used to filter known illegal and
legal content. Blacklisting involves the filtering of illegal, harmful con-
tent using a reference database called the blacklist. Whitelisting involves
the filtering of harmless content (e.g., operating system files) to reduce
the amount of content to be investigated. To reduce the size of a refer-
ence database, an identifying hash of fixed length is generated for each
file and stored instead of the file itself. Typically, cryptographic hash
functions are used to generate the file hashes.

If blacklists and whitelists are available, a seized storage device can
be automatically searched for known content – for each file found on the
storage device, a hash is generated and compared with the hashes in the
blacklist and whitelist. In this way, illegal content as well as harmless
content can be identified. After this is done, it is necessary to inspect
all the remaining files. This is by far the most time consuming part
of a forensic investigation. When new harmful and harmless files are
identified during the inspection, their hashes are stored in the blacklist
and whitelist, respectively.

3.1 Robust Hashes

Unlike cryptographic hashes, “perceptual” or “robust” hashes are
specifically designed for multimedia data. Robust hashes are gener-
ated from multimedia data properties based on human perception (e.g.,
brightness, form and contrast). Robust hashing provides an automated
mechanism to decide if two multimedia files (with different cryptographic
hashes) are perceived as being identical or very similar to each other.
Several researchers have used robust hashing on image and video data
[2, 9, 19] and on audio data [1, 6]. Lejsek, et al. [7] have used robust
hashing to identify illegal image and video content. Their approach uses
a combination of local image descriptors based on SIFT and multidi-
mensional NV-trees to identify video data. Experiments indicate that
the approach is robust to video modifications such as mirroring, scaling

Yannikos, Ashraf, Steinebach & Winter 199

and cropping. However, since the content to be identified is assumed to
be available, their approach is not applicable to the preliminary investi-
gation of storage media.

We have recently proposed an improved version [15] of the block-
based video hash introduced by Yang, et al. [17]. This block-based
video hash was chosen because it strikes the right balance between low
computational complexity and good detection results.

4. Multimedia Content

Advanced methods for multimedia content recovery and identifica-
tion/classification require the decoding of multimedia data. Knowledge
about the specific structures of multimedia file formats is vital to these
methods. Since this paper focuses on the recovery and identification of
MPEG-1 video data fragments, we briefly describe the structure of the
MPEG-1 video format.

An MPEG-1 video stream is essentially a sequence of still images
called frames. The video stream is divided into several layers (Figure 1).
The first layer is the sequence layer, which denotes a number of video
sequences, each starting with a sequence header and ending with a se-
quence end code. The sequence header stores information necessary for
decoding the actual picture data (e.g., resolution information). An arbi-
trary number of groups of pictures (GOPs) exist between the sequence
header and sequence end code. The GOP also starts with a header fol-
lowed by a number of pictures (frames). The first frame of each GOP is
always an I-frame; the others are B-frames and P-frames.

In the picture layer, the header is followed by slices containing the
actual picture data. The picture data itself is organized in a macroblock
layer with a header, four luma blocks with brightness information and
two chroma blocks with color information.

MPEG-1 files may have a video stream or video and audio streams.
In the latter case, the two streams are multiplexed as a transport stream
(e.g., used for network streaming) or a program stream (e.g., used for
storage purposes).

5. Challenges

According to the Cyber Forensic Field Triage Process Model [12], it is
important to increase the speed at which forensic analysis is performed.
This requires efficient forensic tools that involve as little human inter-
action as possible. Automated procedures can significantly reduce the
workload of forensic investigators.

200 ADVANCES IN DIGITAL FORENSICS IX

Figure 1. MPEG-1 video stream organization (from [16]).

Although several file carving approaches exist, the main challenge is
dealing with fragmentation. Most file carvers are not robust enough to
handle even small amounts of fragmentation, or they merely assume that
all the data found between a header and footer belongs to a single file.
Currently available video file carvers allow single frame carving as well
as decoding and visualization, but often fail if just a few bytes of a frame
are corrupted or missing.

At this time, law enforcement primarily uses cryptographic hashing to
identify known multimedia content. However, this approach cannot iden-
tify content that has been (even slightly) modified, for example, through
compression or cutting. For these reasons, a considerable amount of time
is spent to manually inspect the various types of unidentified multimedia
content that are encountered during a forensic investigation.

6. Video Frame Recovery and Identification

Our automated procedure for video file recovery and identification
requires little or no interaction with a forensic investigator. Although
we use the MPEG-1 as an example format for the recovery and decoding

Yannikos, Ashraf, Steinebach & Winter 201

steps, the steps can be applied to any video format with components
similar to I-frames.

The automated procedure incorporates three steps that are performed
in sequence:

1. Robust Recovery: This step involves searching a storage device
or hard disk image, and reconstructing complete video files or sin-
gle frames of video data found on the device. Specific properties
of video file formats are engaged to support robust recovery.

2. Robust Decoding: This step involves the decoding of video con-
tent. Techniques such as resolution correction and resolution iden-
tification are used to enable decoding even when some of the data
is corrupted or missing.

3. Robust Identification: This step involves the calculation of ro-
bust hashes of video content (single frames) to identify unchanged
content and slightly modified content. The reference databases are
also searched for known robust hashes.

6.1 Robust Recovery

The robust recovery of video content should apply file carving in a
more advanced manner than traditional header/footer identification.
Therefore, we designed a video frame carving approach that analyzes
video frame information in order to extract and decode single I-frames.
If the resolution information required for decoding is not present or can-
not be found, a resolution identification/correction approach is applied
to decode the available data.

The algorithm for recovering and decoding video frames has the fol-
lowing steps:

1. Locate all the I-frames by searching the input data for I-frame
headers and verifying the headers. If no I-frame headers are found,
stop.

2. Starting with the located I-frame headers, search the input data
backwards for corresponding sequence headers within a specific
threshold range.

3. If a sequence header is found, extract the resolution information
from the sequence header; this information is needed for the sub-
sequent decoding of I-frames.

4. Read the data following the I-frame header; this is typically op-
tional and/or I-frame slice data. Ignore the optional data and ver-

202 ADVANCES IN DIGITAL FORENSICS IX

ify the slice data. Ignore the missing and invalid slice data parts;
instead, read the data that follows within a specific threshold range
until additional slice data is found.

5. Read the following data and verify the structure until the next
frame start code, GOP start code or sequence end code is found.

6. If the MPEG stream was identified as a system stream, demultiplex
the I-frame data; otherwise, skip this step.

6.2 Robust Decoding

The recovered I-frames must be decoded to allow further processing
such as automated content identification. Typically, decoding proceeds
without any problem if all the information required for decoding is avail-
able. For an I-frame, this includes the resolution information, which is
stored in its corresponding sequence header. If the specific sequence
header is not available (e.g., due to fragmentation or overwriting), the
correct resolution needed for decoding has to be found in some other
manner.

Since a robust decoding should be able to handle cases where I-frame
resolution information is missing, we propose the use of a resolution
identification and correction procedure. This involves decoding frames
with commonly used resolutions and subsequently measuring the pixel
row differences of the decoded frames to automatically identify the cor-
rect decoding results. All the decoding results should be stored in a
widely-supported image file format such as JPEG.

The robust decoding algorithm has the following steps:

1. Decode all the I-frames with their corresponding resolution infor-
mation obtained from the sequence headers.

2. For each I-frame with missing resolution information:

(a) Decode the I-frame using each unique resolution previously
extracted from the sequence headers.

(b) Decode the I-frame using the most common resolutions for
the specific video format (e.g., source input format (SIF)).

(c) Apply the resolution correction

3. Store each decoded result as a JPEG file.

The first two steps of the algorithm help recover and decode frames
of video files that are fragmented or are partially overwritten.

Yannikos, Ashraf, Steinebach & Winter 203

Resolution Correction. During a video frame recovery process, the
sequence headers containing resolution information may be missing for
certain frames. This could occur because the headers were overwrit-
ten with other data or they could not be located due to fragmenta-
tion. For these frames, the following automated resolution identifica-
tion/correction algorithm is applied:

1. Identify Suitable Resolutions for Frame Decoding: Initially
identify the suitable resolutions for decoding, e.g., chosen from the
most commonly used resolutions of the specific video format or
from resolutions of frames found in the same raw data set.

2. Decode Frames Using Suitable Resolutions: Decode each
frame using the previously determined suitable resolutions (indi-
vidually chosen for each frame).

3. Correct Resolution Identification for Incorrect Decoding
Results:

(a) Divide each decoding result into blocks of 16×16 pixels.

(b) Discard the green blocks that appear at the end of a decoding
result.

(c) Determine all possible resolutions for the remaining 16×16
pixel blocks.

(d) Create new decoding results using these resolutions.

(e) Measure the global pixel block row difference as follows:

∆(r) =

∑

n−1
b

i=1

∑m
j=1 δ2

v(bi, bi + 1, j)

1 +
∑

n−1
b

i=1

∑m
j=1 c(bi, bi + 1, j)

for each decoding result r with n,m dimensions of r (n rows,
m columns); b pixel block size (here, b = 16); p(i, j) pixel
value for pixel at row i, column j; vertical pixel difference
δv(i, i′, j) = | p(i, j) − p(i′, j) | and

c(i, i′, j) =

{

1 if δv(i, i′, j) > 0
0 otherwise

(f) Determine the result r with the smallest ∆(r) as the correct
decoding result.

204 ADVANCES IN DIGITAL FORENSICS IX

6.3 Robust Identification

Robust identification is the final step of the automated procedure for
processing the recovered frames. In general, the recovered video frames
can be processed via automated classification or identification of their
content. However, many classification approaches are somewhat limited
and yield high false positive and/or false negative rates. An example is
an approach that uses the amount of skin tones in an image to infer that
the image shows human skin. Therefore, we propose the use of robust
hashing to identify known content in an automated manner. Our robust
block hashing method [15] allows for efficient content identification; it
can help divide large sets of recovered frames into known and unknown
content. Cryptographic hashing can also be used for automated content
identification, but it lacks robustness.

Our robust block hashing method is used for the robust identification
of MPEG-1 frames. Therefore, all the decoding results stored as JPEG
files after the robust decoding procedure are further processed by detect-
ing and removing horizontal or vertical black bars caused by letterbox,
pillarbox or windowbox effects. Then, the corresponding robust block
hashes are calculated, which are subsequently used to query a reference
database (e.g., with blacklisted content). If the same or a similar robust
block hash is found in the reference database, the corresponding I-frame
is classified as showing illegal content.

7. Experimental Evaluation

This section describes the experimental results obtained for the ro-
bust recovery, robust decoding and robust identification steps of our
procedure.

7.1 Recovery (MPEG-1 Frame Carving)

For our experiments, we prepared ten data sets, each consisting of a
raw byte stream with random data. Five MPEG-1 files with only video
data were chosen (i.e., “elementary stream” MPEG-1 files), and five
files with multiplexed video and audio data were chosen (i.e., “system
stream” MPEG-1 files). The MPEG-1 files had a frame rate of 25 or
29.9 fps, bit rates ranging from 0.58 to 4.09 Mbps, file sizes between
3 MiB and 46 MiB; and contained between 29 and 302 I-frames.

For each data set, we took one of the MPEG-1 files, split a randomly
(non-zero) sized portion of the file into chunks of predefined size s, and
put these chunks into the data set in a non-consecutive order. The first
group of five data sets Gelem comprised the elementary stream MPEG-1

Yannikos, Ashraf, Steinebach & Winter 205

0

25

50

75

100

KiB Chunk Size
4 20 36 52 68 84 100 116 132

R
ec

ov
er

ed
 I-

Fr
am

es
 (%

)

Figure 2. Percentage of completely recovered I-frames per chunk size for Gelem.

files and the second group of five data sets Gsys comprised the system
stream MPEG-1 files. No MPEG-1 file was used twice. The resulting
data set essentially corresponds to a hard drive image filled with random
data and a single fragmented MPEG-1 file with s-sized fragments. The
data set preparation was performed using standard Unix tools.

After the data sets were prepared, our MPEG-1 video frame carv-
ing prototype was used to search each data set for I-frames to be re-
constructed. The number of I-frames that were completely or partly
reconstructed was recorded. After each test run, the chunk size s was
increased, and ten new data sets were prepared by filling them with
random data and using the same set of MPEG-1 files. Then, the next
test run was started. Eighteen different chunk sizes ranging from 4 to
140 KiB were used; thus, each data set was tested eighteen times.

The experimental results in Figures 2 and 3 show that the number of
completely recovered I-frames grows with increasing chunk size, which
is to be expected. Figure 2 shows that, for a mean chunk size of at
least 36 KiB, nearly 50% (49.57%) of the I-frames could be completely
recovered from Gelem. On the other hand, Figure 3 shows that a mean
chunk size of 44 KiB was necessary to completely recover at least 50%
(50.25%) of the I-frames from Gsys.

Figure 2 shows the percentage of completely recovered I-frames per
chunk size for the five data sets in Gelem containing chunks of elementary
stream MPEG-1 video files (mean values shown as a dashed line). Note
that the highest mean rate of 87.8% completely recovered I-frames from
Gelem was obtained for a chunk size of 124 KiB, which is roughly equal
to the size of a GOP with two additional average-sized I-frames.

206 ADVANCES IN DIGITAL FORENSICS IX

0

25

50

75

100

KiB Chunk Size
4 20 36 52 68 84 100 116 132

R
ec

ov
er

ed
 I-

Fr
am

es
 (%

)

Figure 3. Percentage of completely recovered I-frames per chunk size for Gsys.

Figure 3 shows the percentage of completely recovered I-frames per
chunk size for the five data sets in Gsys containing chunks of system
stream MPEG-1 video files (mean values shown as a dashed line). Note
that the highest mean rate of completely recovered I-frames was 90.55%
for a chunk size of 132 KiB.

The different results obtained for Gelem and Gsys are due to the dif-
ferent file structures. The MPEG-1 files constituting the system stream
contain more header information as well as audio data. Therefore, larger
chunk sizes are needed to obtain better carving results.

The results show that I-frames from fragmented MPEG-1 files even
with relatively small chunks (fragments) can be recovered completely
or partially. Starting with a chunk size of 28 KiB, 20% or more of
the I-frames were recovered completely or partially. Note that both
the completely and partially recovered I-frames (which cause incorrect
decoding results) are useful to evaluate the robust hashing method.

We also compared the performance of our MPEG-1 video frame carv-
ing implementation with Defraser [14], which works in a similar manner.
For the comparison, we prepared six MPEG-1 video files (25 or 29.9 fps,
1.13 to 3.05 Mbps bit rate, 6 MiB to 46 MiB file size) and cut them
into chunks of 4, 8, 16, 32, 64, 128 and 256 KiB. The chunks were then
placed on a 1 GiB hard disk image file that was previously filled with
random data.

Our prototype implementation and Defraser were able to recover 92%
of the 361 I-frames. Of the recovered frames, both Defraser and our
implementation were able to recover 82% I-frames completely and 18%
partially. However, because Defraser relies on finding intact sequence
headers, it was unable to recover I-frames with corrupted or missing

Yannikos, Ashraf, Steinebach & Winter 207

16
0x
12
0

32
0x
24
0

35
2x
24
0

35
2x
28
8

51
2x
51
2

60
0x
40
0

64
0x
48
0

10
24
x5
12

10
24
x5
52

oth
er

10

20

30

34.2

9.8
6.1 5.9 5.85.2

3.33.0

15.6

Resolution

Pe
rc
en
t

11.2

Figure 4. Resolution distribution of 5,489 randomly-downloaded MPEG-1 video files.

sequence headers. For such cases, we used the frame resolution correction
procedure, which is described below.

7.2 Decoding (Resolution Correction)

A post-processing step is required to find the correct resolution when
the resolution information of individual frames is missing. The post-pro-
cessing was done as follows:

Identification of Resolutions for Frame Decoding: First,
we identified the most commonly used resolutions of the MPEG-
1 video format by collecting 5,489 different MPEG-1 videos from
random sources using Google. Next, we extracted the resolutions
that were used. We observed that nearly 85% of the video files used
one of nine resolutions, including the SIF resolutions. Note that,
according to the MPEG specification, MPEG-1 video data should
be encoded using one of three SIF resolutions: 352×240, 352×288
or 320×240 pixels. Figure 4 shows the resolution distribution of the
MPEG-1 files. We believe that, together with the most commonly
used MPEG-1 video resolutions, all the resolutions of frames found
in the same raw data set would be suitable for individual frame
decoding and subsequent resolution identification.

Frame Decoding and Resolution Correction: Using the reso-
lutions that were determined to be suitable, we decoded each frame
several times, each time with a different resolution. The results
were stored as JPEG files. For each frame, we chose the decod-

208 ADVANCES IN DIGITAL FORENSICS IX

(a) Original frame with incorrect resolution.

(b) Same frame with corrected resolution.

Figure 5. Frame decoding results before and after resolution correction.

ing result with the least amount of green blocks and applied our
resolution correction approach. To evaluate the resolution correc-
tion approach, we used a test set of ten sample frames, where each
frame was stored using 30 different resolutions. Upon applying the
resolution correction, we were able to automatically produce de-
coding results with correct resolutions for about 80% of the JPEG
files. Figure 5 shows an example of a frame decoding result with
incorrect resolution and one with corrected resolution.

7.3 Identification (Robust Hashing)

With regard to content identification, we used our prototype imple-
mentation as reported in [15] to evaluate robust block hashing with a

Yannikos, Ashraf, Steinebach & Winter 209

test set containing simulated illegal images. Specifically, the test set
contained 4,400 images of a cheerleader team, the notable characteris-
tics being a large quantity of skin colors, similar poses in all the images,
and the presence of one or more persons in all the images. The images
were randomly divided into two equal-sized groups. One group was used
as a test set to be recognized and was added to a robust hash database
that already contained 88,000 robust hashes of other images. The sec-
ond group of images was used as a test set to evaluate the false positive
rate.

All 4,400 images were scaled down by a factor to ensure that the
larger edge was only 300 pixels long; this corresponded to an average size
reduction of 25% compared with the original images. Next, the images
were horizontally mirrored and stored with a JPEG quality factor of
20, producing small images of low quality. This procedure simulates the
strong changes that can occur during image conversion.

The two groups of images could be distinguished rather well using
the Hamming distance between robust hashes as a feature to distinguish
between known and unknown images. With a Hamming distance of 32
as the threshold, a false positive rate of 1.1% and a false negative rate
of 0.4% were obtained. When using a Hamming distance of eight as
the threshold, the false negative rate increased to 10% while the false
positive rate dropped to 0%. Using both the Hamming distance and a
weighted distance as proposed in [15] yielded even better results: for a
Hamming distance of eight and a weighted distance of sixteen, the false
positive rate dropped to 0% and the false negative rate fell to just 0.2%.

We also used our implementation to measure the time needed to create
a robust hash of an image and to look up the hash in a database. We used
the same image set of 4,400 images and the same robust hash database
(88,000 plus 2,200 hashes). Our experiments revealed that each image
was processed in roughly 10 ms, including robust hash generation and
database lookup. We also observed that the speed could be increased
up to factor of four when hard drive caching was used. These results are
comparable with those obtained when computing cryptographic hashes
(e.g., SHA-1) of the image files.

8. Conclusions

Combining robust video file recovery, robust frame decoding and ro-
bust video content identification into a single automated procedure can
speed up forensic investigations. The prototype implementation de-
scribed in this paper can recover and decode single MPEG-1 I-frames
in the presence of small amounts of fragmentation. Additionally, ro-

210 ADVANCES IN DIGITAL FORENSICS IX

bust block hashing can help recognize known image material, such as
recovered and decoded I-frames, with low error rates and computational
overhead.

The prototype implementation provides good results with regard to
recovery, decoding and identification. Most video file carving approaches
do not work well in the presence of fragmentation. Additionally, unlike
our prototype, most carving tools do not have integrated I-frame de-
coders. The Defraser tool [14] can decode and visualize I-frames, but
fails if just a few bytes of data (e.g., sequence header) needed for decoding
are not available. Further research is necessary on reliable fragmenta-
tion point detection for multimedia file formats. Pal, et al. [10] have
proposed a promising approach for text and image recovery, especially
for JPEG files. However, fragmentation point detection approaches have
yet to be developed for a wide range of video and audio file formats.

Robust hashing clearly improves video content identification mech-
anisms such as cryptographic hashing, which are prone to fail if the
data to be hashed has been manipulated even slightly. Also, block-wise
cryptographic hashing as proposed in [4] can help identify known video
content, especially single frame fragments that cannot be decoded any-
more. However, since the corresponding reference database can be very
large, it is necessary to explore approaches for trading-off fragmentation
robustness, database size and lookup speed.

Acknowledgement

This research was supported by the Center for Advanced Security
Research Darmstadt (CASED), Darmstadt, Germany.

References

[1] E. Allamanche, J. Herre, O. Hellmuth, B. Froba, T. Kastner and
M. Cremer, Content-based identification of audio material using
MPEG-7 low level description, Proceedings of the Second Interna-
tional Symposium on Music Information Retrieval, 2001.

[2] J. Fridrich and M. Goljan, Robust hash functions for digital water-
marking, Proceedings of the International Conference on Informa-
tion Technology: Coding and Computing, pp. 178–183, 2000.

[3] S. Garfinkel, Carving contiguous and fragmented files with fast ob-
ject validation, Digital Investigation, vol. 4(S), pp. S2–S12, 2007.

[4] S. Garfinkel, A. Nelson, D. White and V. Roussev, Using purpose-
built functions and block hashes to enable small block and sub-file
forensics, Digital Investigation, vol. 7(S), pp. S13–S23, 2010.

Yannikos, Ashraf, Steinebach & Winter 211

[5] C. Grenier, PhotoRec (www.cgsecurity.org/wiki/PhotoRec),
2007.

[6] J. Haitsma, T. Kalker and J. Oostveen, Robust audio hashing for
content identification, Proceedings of the International Workshop
on Content-Based Multimedia Indexing, pp. 117–124, 2001.

[7] H. Lejsek, A. Johannsson, F. Asmundsson, B. Jonsson, K. Dada-
son and L. Amsaleg, Videntifier forensics: A new law enforcement
service for the automatic identification of illegal video material, Pro-
ceedings of the First ACM Workshop on Multimedia in Forensics,
pp. 19–24, 2009.

[8] N. Memon and A. Pal, Automated reassembly of file fragmented
images using greedy algorithms, IEEE Transactions on Image Pro-
cessing, vol. 15(2), pp. 385–393, 2006.

[9] J. Oostveen, T. Kalker and J. Haitsma, Visual hashing of video: Ap-
plication and techniques, Proceedings of the Thirteenth IS&T/SPIE
International Symposium on Electronic Imaging, Security and Wa-
termarking of Multimedia Contents, vol. 4314, 2001.

[10] A. Pal, H. Sencar and N. Memon, Detecting file fragmentation
points using sequential hypothesis testing, Digital Investigation, vol.
5(S), pp. S2–S13, 2008.

[11] G. Richard III and V. Roussev, Scalpel: A frugal, high performance
file carver, Proceedings of the Fifth Annual Digital Forensics Re-
search Workshop, 2005.

[12] M. Rogers, J. Goldman, R. Mislan, T. Wedge and S. Debrota, Com-
puter Forensics Field Triage Process Model, Proceedings of the Con-
ference on Digital Forensics, Security and Law, pp. 27–40, 2006.

[13] SourceForge.net, Foremost(foremost.sourceforge.net).

[14] SourceForge.net, NFI Defraser (sourceforge.net/projects/def
raser).

[15] M. Steinebach, H. Liu and Y. Yannikos, Forbild: Efficient robust
image hashing, Proceedings of the SPIE Conference on Media Wa-
termarking, Security and Forensics, vol. 8303, 2012.

[16] S. Vimal, Introduction to MPEG Video Coding, Lectures on Mul-
timedia Computing, Department of Computer Science and Infor-
mation Systems, Birla Institute of Technology and Science, Pilani,
India, 2007.

[17] B. Yang, F. Gu and X. Niu, Block mean value based image percep-
tual hashing, Proceedings of the International Conference on In-
telligent Information Hiding and Multimedia Signal Processing, pp.
167–172, 2006.

212 ADVANCES IN DIGITAL FORENSICS IX

[18] B. Yoo, J. Park, S. Lim, J. Bang and S. Lee, A study of multimedia
file carving methods, Multimedia Tools and Applications, vol. 61(1),
pp. 243–251, 2012.

[19] X. Zhou, M. Schmucker and C. Brown, Video perceptual hashing
using interframe similarity, Proceedings of the 2006 Sicherheit Con-
ference, pp. 107–110, 2006.

