A Generic Bayesian Belief Model for Similar Cyber Crimes

Abstract : Bayesian belief network models designed for specific cyber crimes can be used to quickly collect and identify suspicious data that warrants further investigation. While Bayesian belief models tailored to individual cases exist, there has been no consideration of generalized case modeling. This paper examines the generalizability of two case-specific Bayesian belief networks for use in similar cases. Although the results are not conclusive, the changes in the degrees of belief support the hypothesis that generic Bayesian network models can enhance investigations of similar cyber crimes.
Type de document :
Communication dans un congrès
Gilbert Peterson; Sujeet Shenoi. 9th International Conference on Digital Forensics (DF), Jan 2013, Orlando, FL, United States. Springer, IFIP Advances in Information and Communication Technology, AICT-410, pp.243-255, 2013, Advances in Digital Forensics IX. 〈10.1007/978-3-642-41148-9_17〉
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01460609
Contributeur : Hal Ifip <>
Soumis le : mardi 7 février 2017 - 17:25:56
Dernière modification le : vendredi 1 décembre 2017 - 01:16:43
Document(s) archivé(s) le : lundi 8 mai 2017 - 14:56:27

Fichier

978-3-642-41148-9_17_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Hayson Tse, Kam-Pui Chow, Michael Kwan. A Generic Bayesian Belief Model for Similar Cyber Crimes. Gilbert Peterson; Sujeet Shenoi. 9th International Conference on Digital Forensics (DF), Jan 2013, Orlando, FL, United States. Springer, IFIP Advances in Information and Communication Technology, AICT-410, pp.243-255, 2013, Advances in Digital Forensics IX. 〈10.1007/978-3-642-41148-9_17〉. 〈hal-01460609〉

Partager

Métriques

Consultations de la notice

263

Téléchargements de fichiers

131