
HAL Id: hal-01460615
https://inria.hal.science/hal-01460615

Submitted on 7 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Security Analysis and Decryption of Filevault 2
Omar Choudary, Felix Grobert, Joachim Metz

To cite this version:
Omar Choudary, Felix Grobert, Joachim Metz. Security Analysis and Decryption of Filevault 2. 9th
International Conference on Digital Forensics (DF), Jan 2013, Orlando, FL, United States. pp.349-363,
�10.1007/978-3-642-41148-9_23�. �hal-01460615�

https://inria.hal.science/hal-01460615
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Chapter 23

SECURITY ANALYSIS AND
DECRYPTION OF FILEVAULT 2

Omar Choudary, Felix Grobert and Joachim Metz

Abstract This paper describes the first security evaluation of FileVault 2, a vol-
ume encryption mechanism that was introduced in Mac OS X 10.7
(Lion). The evaluation results include the identification of the algo-
rithms and data structures needed to successfully read an encrypted
volume. Based on the analysis, an open-source tool named libfvde was
developed to decrypt and mount volumes encrypted with FileVault 2.
The tool can be used to perform forensic investigations on FileVault 2
encrypted volumes. Additionally, the evaluation discovered that part of
the user data was left unencrypted; this was subsequently fixed in the
CVE-2011-3212 operating system update.

Keywords: Volume encryption, full disk encryption, FileVault 2

1. Introduction

The FileVault 2 volume encryption software was first included in Mac
OS X version 10.7 (Lion). While the earlier version of FileVault (intro-
duced in Mac OS X 10.3) only encrypts the home folder, FileVault 2 can
encrypt the entire volume containing the operating system – referred to
as “full disk encryption.” This has two major implications. The first
is that there is a new functional layer between the encrypted volume
and the original filesystem (typically a version of HFS Plus). This new
functional layer is actually a full volume manager, which Apple calls
CoreStorage. Although the full volume manager could be used for more
than volume encryption (e.g., mirroring, snapshots and online storage
migration), we do not know of any other applications. Therefore, in
the rest of this paper we use the term CoreStorage to refer to the com-
bination of the encrypted volume and the functional layer that links
the volume to the HFS Plus filesystem. The second implication is that



350 ADVANCES IN DIGITAL FORENSICS IX

the boot process is modified because the user password or some other
recovery token must be retrieved before the operating system can be
decrypted.

Mac OS X volume encryption is similar to other volume encryption so-
lutions. These include PGP Whole Disk Encryption [22], TrueCrypt [23],
Sophos SafeGuard [21], Credant [6], WinMagic SecureDoc [24] and Check
Point FDE [4].

This paper presents a detailed analysis of the FileVault 2 full disk
encryption architecture, including the key derivation mechanisms and
the data structures needed for decryption. Based on the analysis, an
open source cross-platform library named libfvde was developed to
decrypt and mount CoreStorage volumes. The library and the detailed
documentation of the data structures used by FileVault 2 are available
online [5]. The library can be used to analyze the contents of a particular
file or block in an encrypted volume without having to use Mac OS and
even without gaining physical access to the Apple computer in question
(e.g., by booting from a Linux live CD and connecting to the machine
via the Internet).

1.1 Motivation

Our main goal was to determine how FileVault 2 operates. This task
involved finding how and where the encrypted volume master key is
stored, how the key can be obtained from the user password or token,
what other data (metadata) is available and how is used, and finally,
how disk encryption and decryption are performed.

We were motivated by two factors. First, we needed a tool for digital
forensic investigations. When a computer is suspected of having malware
or having been the target of malicious access, it is necessary to obtain
certain files from the disk. If the computer is at a distant location, it
may not be feasible or convenient to transport the computer or disk to a
forensic laboratory for analysis (it is not easy to remove the disk from a
MacBook Air). Even if physical access is available to the computer, the
native operating system cannot be trusted to extract the necessary files
because of the presence of malware. Furthermore, although it is possible
to access a FileVault 2 encrypted volume using another Mac computer
connected via FireWire, this is a very limiting context. Our open source
library (libfvde) does not have any of these limitations.

Our second motivation was to have a security evaluation of the system.
Since FileVault 2 could be used on sensitive corporate machines, it is
necessary to verify that no serious vulnerabilities exist.



Choudary, Grobert & Metz 351

2. Background

A hard disk is generally organized in multiple sections called partitions
or volumes. These volumes are often structured according to a filesystem
format (e.g., NTFS, FAT or HFS). It is possible to have a single disk
with three volumes, where the first volume is formatted with NTFS and
contains a Windows operating system, the second volume is formatted
with EXT3 and contains an installation of a Linux distribution, and the
third volume is formatted with FAT and only contains data (no operating
system). Interested readers are referred to [3] for details about this topic.

Volume encryption is a mechanism used to encrypt the contents of
an entire volume. This is sometimes incorrectly referred to as “full disk
encryption.” We will use the term “volume encryption” in this paper to
refer to the encryption performed by FileVault 2.

One of the main problems with volume encryption is that the oper-
ating system data is also encrypted, so there is no code left to boot the
system. Therefore, the minimum code required to decrypt the operating
system (or enough to initialize the filesystem and decrypt the rest of
the operating system) must reside elsewhere. This is a problem that is
tackled differently by the various volume encryption solutions.

Another important aspect of volume encryption is key derivation. The
volume is generally encrypted using an algorithm that relies on AES or
other symmetric cipher (asymmetric cryptography would have too much
of an impact on read/write performance). Therefore, there must be a
key that can unlock the encrypted volume. FileVault 2 uses 128-bit AES
keys and has a layered architecture that allows multiple users to decrypt
the same volume master key.

The next important aspect of volume encryption is the encryption op-
eration itself. This operation must be carefully designed because there
are several problems that can make a straightforward implementation in-
secure [11]. Also, the nature of disk encryption has special requirements
with regard to speed (encryption should not introduce noticeable delays)
and size (individual fixed-size sectors must be encrypted individually so
they can be accessed independently).

The last important problem deals with the storage of the volume
master key during the system operation and sleep modes. During the
boot process, the volume master key is derived from the user password
or token. After this key is derived, the operating system stores it in
memory in order to read and write blocks efficiently without having
to derive the key on every disk access. Halderman, et al. [13] have
shown that an attacker with temporary access to a running system can
scan the memory to retrieve the volume master key and then decrypt



352 ADVANCES IN DIGITAL FORENSICS IX

Figure 1. Recovery password shown when FileVault 2 is enabled.

the disk contents. This is still a general problem, but it is possible to
use proprietary methods such as on-board tamper resistant memory to
mitigate these attacks.

3. FileVault 2 Architecture

This section describes the architecture and key features of FileVault 2.

3.1 Enabling FileVault 2

After FileVault 2 is enabled, a series of events take place. First, the
user is presented with a 24-character recovery password (see Figure 1)
that can be used to access the encrypted volume, even if the user pass-
word is lost.

Next, the filesystem in the main volume is converted from the na-
tive HFS Plus type to CoreStorage (encrypted). During this opera-
tion, the user can still use the system and the ConversionStatus field
in the EncryptedRoot.plist file (details are provided below) contains
the string “Converting.” After the encryption process is complete, the
string is changed to “Complete.” At this time, we do not know how the
operating system keeps track of the encrypted blocks during the conver-
sion process, so our tool cannot correctly mount volumes that are in the
Converting state. We are continuing to investigate this situation.

In addition to the encryption itself, a new volume called Recovery HD
appears alongside the main Macintosh HD volume. This new partition
contains the encrypted volume master key.

Running the command diskutil list on a Mac OS installation with
FileVault 2 enabled yields an output similar to that shown in Figure 2.
The output contains the encrypted volume (disk0s2), Recovery HD
volume (disk0s3), original unmodified EFI volume (disk0s1) and also
the unlocked (unencrypted) version of the main volume (disk1). There



Choudary, Grobert & Metz 353

Figure 2. Output of diskutil list run on a Mac Book Air with FileVault 2 enabled.

is also an additional partition (disk0s4), which we created only for
testing purposes.

The Recovery HD volume contains a series of new files, including
new EFI boot code to deal with the encrypted volume. Among all the
files available in the new volume, the most important for FileVault 2
operation is the EncryptedRoot.plist.wipekey file, which is found at:
com.apple.boot.X/System/Library/Caches/com.apple.corestorage where
X changes between R, S and P . This file contains all the information
needed to extract the volume master key from the user password or
recovery token.

The EncryptedRoot.plist.wipekey file is encrypted using AES-XTS
with an all-zeros “tweak key,” but the encryption key is easily available
in the header (first block) of the CoreStorage volume. The header block
also contains other data, including the size of the entire volume (in-
cluding metadata), another UUID that is used as a key to decrypt part
of the metadata, and a CRC32 checksum. The checksum uses a weak
CRC calculation based on the Castagnoli (CRC-32C) polynomial. The
same checksum is used to validate the values in the FileVault 2 metadata
structures.

After it is decrypted, the EncryptedRoot.plist file includes the fol-
lowing important entries: recovery password PassphraseWrappedKEK-
Struct, user password PassphraseWrappedKEKStruct and wrapped vol-
ume master key KEKWrappedVolumeKeyStruct. If multiple users are
registered on the same machine, then the EncryptedRoot.plist file has
a separate PassphraseWrappedKEK structure for each user.

3.2 Key Derivation

The volume master key is derived from the user password, private key
token or recovery password. Since the volume master key is the same
but the input may be different, FileVault 2 uses an intermediary key that
is decrypted under different inputs: password or recovery token. This
intermediary key, which decrypts the volume master key, is called the



354 ADVANCES IN DIGITAL FORENSICS IX

Password Entry

Volume Key

Recovery
Key

FileVaultMaster 
Private Key

RSA PKCS1

AES-XTS-128
EncryptedRoot.plist.wipekey

file on Recovery Volume

Header of CoreStorage
Volume

EncryptedRoot.plist

16 byte
salt

Encrypted
KEK BlobKey-Encryption-Keys

PassphraseWrappedKEK KeyWrappedKEK

PBKDF2:
41000 x SHA-256

RFC3394
Keyunwrapping

RFC3394
Keyunwrapping

KEK2

KEKWrappedVolumeKey RFC3394
Keyunwrapping

Figure 3. FileVault 2 key derivation process.

volume Key-Encryption-Key (KEK). The overall key derivation process
is shown in Figure 3.

We now describe the key derivation process when the volume master
key is derived from the user password. The first step is to derive the in-
termediary volume KEK from the given password; this is accomplished
in two stages. First, PBKDF2 is used to derive a key from the user pass-
word. Then, the AES-wrapped version of the volume KEK is decrypted
using this key.

The PBKDF2 Algorithm [14] derives a standard cryptographic key
(of any length) from an arbitrary password string. The main objective
of the algorithm is to make it difficult for an attacker to brute force all
possible values of the user password. This is accomplished using two
countermeasures: a salt to prevent rainbow table attacks and a large
number of iterations of a pseudorandom function to increase the compu-
tational time. In the case of FileVault 2, both the salt and the number of
iterations are available in the PassphraseWrappedKEK structure from



Choudary, Grobert & Metz 355

the EncryptedRoot.plist file. We observed that FileVault 2 uses a
fixed number of 41,000 iterations of HMAC-SHA256, although we found
code that allows a variable number of iterations that are multiples of
1,000 (but this code does not appear to be used).

After the PBKDF2 key is derived, it can be used to unwrap the volume
KEK using the AES Wrap Algorithm [20]. The wrapped version of the
volume KEK is also found in the PassphraseWrappedKEK structure.
After obtaining the volume KEK, the same AES Wrap Algorithm can be
applied to the data from the KEKWrappedVolumeKeyStruct structure
to obtain the volume master key.

In both the unwrapping operations, the wrapped data has 24 bytes,
but the unwrapped key has only sixteen bytes. This is because the first
eight bytes of the unwrapped data actually contain the initial value of
0xA6 (a different value indicates a wrong decryption key), leaving only
sixteen bytes for the actual unwrapped key.

The recovery password shown in Figure 1 can be used exactly as the
user password. Note that the dashes are part of the password and must
be included.

As an alternative decryption token – especially for organizations that
need key escrow – a private key in the FileVaultMaster certificate may
be used. This certificate is generally installed in /Library/Keychains/
FileVaultMaster.cer. In this case, the volume KEK is obtained from
the KeyWrappedKEK structure instead of the PassphraseWrappedKEK
structure. The KeyWrappedKEK structure contains a wrapped version
of the volume KEK. To unwrap it, it is necessary to use a recovery key
that is saved as an encrypted blob (in file EncryptedRoot.plist) that
is protected using RSA and PKCS#1 padding. Note that the encrypted
blob is added along with ExternalKeyProps to EncryptedRoot.plist
when a certificate is used for recovery. The recovery key can be extracted
from the blob using the private key from the FileVaultMaster certificate.

3.3 AES-XTS

FileVault 2 uses the AES-XTS Algorithm [16] to encrypt data. AES-
XTS is a type of “tweakable encryption” that uses AES [17] as the block
cipher. The XTS construction for tweakable encryption is based on
XEX [19]. It uses a tweak value to encrypt each block on the volume
differently, even if the plaintext is the same.

The AES-XTS encryption operation is performed per block. The
blocks can be of arbitrary size, although multiples of 128 bits are gen-
erally used. For each data block to be encrypted, the algorithm expects



356 ADVANCES IN DIGITAL FORENSICS IX

two keys named key1 and key2 (tweak key) that are 128 or 256 bits long,
and a 128-bit tweak value i that is usually derived from the block offset.

AES-XTS has several advantages over alternatives such as AES-CBC:
there is no requirement for an initialization vector because the tweak
key can be derived from the block number; each block is encrypted
differently based on the tweak value; furthermore, unlike AES-CBC,
AES-XTS prevents an attacker from changing one specific bit in a data
unit by XOR-ing each AES input with a different shifted version of the
encrypted tweak.

FileVault 2 uses AES-XTS in several places, always with 128-bit keys.
It is used to encrypt the EncryptedRoot.plist file, where key1 is avail-
able on the main volume header and key2 is 128 bits of zeroes (i.e., 16
zero bytes); the tweak value is zero and the entire file is treated as one
large block. AES-XTS is also used to encrypt part of the metadata,
where key1 is the same key used to encrypt the EncryptedRoot.plist
file, but key2 is another value known as Physical Volume UUID, also
found on the volume header. Finally, AES-XTS is used to encrypt the
main volume.

In the previous section, we discussed how to derive the volume master
key, which is used as key1 with AES-XTS. However, key2 (tweak key) is
also required. Finding this tweak key was one of our most difficult tasks.
Eventually, we discovered that the tweak key is derived from the volume
master key and another value, Logical Volume Family UUID, which is
found in the encrypted metadata.

AES-XTS encryption might be used in other places as well. We found
unknown key values when performing live debugging for unknown data.
We have indications that these keys are used to encrypt paged data and
other memory contents.

3.4 Metadata Structures

The structures needed to decrypt the main volume, along with a
header and other additional information, are stored in the CoreStor-
age volume listed in Figure 2. The layout of these structures within the
volume is shown in Figure 4.

Two essential metadata structures are needed to decrypt the main
volume: the Disk Label metadata and the encrypted metadata. The
Disk Label metadata block offset and size can be found in the CoreStor-
age volume header. The Disk Label metadata block contains a pointer
to other metadata blocks that are encrypted, so we refer to these blocks
as encrypted metadata. The contents can be decrypted using AES-XTS
with key1 and key2 from the CoreStorage volume header, starting with



Choudary, Grobert & Metz 357

Figure 4. FileVault 2 architecture.

a tweak value of zero and using a block size of 8,192-bytes (size of an
encrypted metadata block).

We are still investigating the exact structure of the metadata, which is
likely related to the structure of CoreStorage. Readers who are interested
in the latest information about these structures and other aspects of our
work are referred to the project website [5].

The encrypted metadata contains, among other things, an XML struc-
ture with a Logical Volume Family UUID (lv.familyUUID). This UUID
can be used to derive the volume tweak key by applying SHA-256 to the
concatenation of the volume master key and the UUID, and retaining
the first 16 bytes of the result:

key2 = MSB16(SHA256(volume master key | lv.familyUUID))

3.5 Full Disk Encryption and Decryption

Having presented the building blocks of FileVault 2, we can describe
the entire volume decryption process, which is illustrated in Figure 4.
First, the EncryptedRoot.plist file is decrypted using the key from



358 ADVANCES IN DIGITAL FORENSICS IX

the volume header. Then, the user password or recovery token is used
to extract the volume master key. Following this, the volume tweak key
is derived from the encrypted metadata and the volume master key. At
this point, AES-XTS is used with the volume master key as key1 and
the volume tweak key as key2 to decrypt the main volume, with a tweak
value starting from zero and a block size of 512 bytes.

4. Security Analysis

This section presents the results of our security analysis of FileVault 2.

4.1 Recovery Password

When activating FileVault 2, the System Preferences application dis-
plays a randomly-generated 120-bit password (base32 encoded) to the
end user and advises that the password should be stored securely for
data recovery (see Figure 1).

The recovery password is read from /dev/random (through libcsfde
and SecCreateRecoveryPassword() in Security.framework). There-
fore, the security of the FileVault 2 system can be reduced to the secu-
rity of the pseudorandom number generator (PRNG) used in Mac OS X
Lion for /dev/random. Mac OS relies on Counterpane’s implementation
of the Yarrow PRNG [15] with modifications by Apple available as open
source [1]. The Yarrow PRNG design has been rendered obsolete by
Fortuna [10], which was written by the original authors.

We evaluated the seeding of the PRNG to evaluate the strength of
Apple’s implementation of Yarrow. Because the state of the PRNG
is kept between reboots, we assume a scenario in which an end user
activates FileVault 2 right after the first boot after the operating system
is installed. This is the worst-case scenario where the PRNG is seeded
with the least amount of entropy. During boot-time, the PRNG is seeded
with 8, 20 and 332 bytes; after boot-time, the PRNG is periodically
seeded with 332 bytes every 10 minutes. An attacker who guesses the
seed correctly could recreate the PRNG state and predict its output,
thereby determining the recovery password. The sources for the seeding
are as follows:

Boot Seed (8 Bytes): This seed is deterministic because it is
the value of the current microtime() during boot.

Boot Seed (20 Bytes):This seed is read from the SystemEntropy
Cache file, which contains the previous state of the PRNG before
reboot. The file is written by EntropyManager every six hours and
during shutdown. It contains a 20-byte output from /dev/random.



Choudary, Grobert & Metz 359

This seed is deterministic in our scenario because the system is
booted for the first time.

Boot and Periodic Seed (328 Bytes): This seed is triggered by
securityd and the contents of the seed are collected in the kernel
function kdbg getentropy(). It corresponds to the core seed for
thePRNG. Thedata contains 41 samples of mach absolute time()
that returns an 8-byte nano-precision time offset for different kernel
threads. We sampled the entropy seed of the PRNG over 1,000 re-
boots. Our estimate is that the total seeding entropy is 40 samples
of eight bits of mach absolute time. This would result in 320 bits
of total entropy because the nano-precision timestamps are only
unpredictable in the lower bits and the higher bytes have repeat-
ing patterns. Thus, this represents a suboptimal search space, i.e.,
not every input to the seed is unpredictable and the amount of en-
tropy input is less than what other operating systems seed [8, 12].
However, the search space is large enough to prevent it from being
brute forced.

In a security-critical scenario, the PRNG should be reseeded by man-
ually writing entropy to /dev/random before activating FileVault 2.

4.2 Plaintext Bits in Encrypted Volume

Having discovered most of the details about the operation of File-
Vault 2, we computed the entropy of each 512-byte block of the CoreStor-
age volume to verify our assumptions and also to ensure that we did not
miss any data.

Figure 5 shows a bitmap of the volume encrypted with Mac OS X
10.7.2. Each pixel corresponds to a 512-byte block. Blue (dark) regions
correspond to plaintext (low entropy), white regions correspond to zero
or constant data such as all bytes with 0x00 or 0xFF (zero entropy), and
red (bright) regions correspond to encrypted data (very high entropy).

The bitmap shows a large block of zero data (with the exception of
the first header block) at the beginning of the disk. This is followed
by a large amount of encrypted data corresponding to the encrypted
volume. At the end, there is a mix of plaintext, encrypted and zero
data corresponding to the metadata, encrypted metadata and related
structures, and the backup header (last block).

Upon examining the encrypted data portion, we discovered that there
is a significant portion of plaintext (around 250 MB) in the middle of
the encrypted volume. This plaintext blob contains code, dictionaries,
journal metadata, error messages, debug messages and some user data.



360 ADVANCES IN DIGITAL FORENSICS IX

Figure 5. Entropy bitmap of the CoreStorage volume created by Mac OS X 10.7.2.

Our best guess is that this data is from the base operating system in-
stallation that was encrypted elsewhere, but that had not been wiped
from the disk. Furthermore, we determined that long-used clear volumes
could contain personal (possibly sensitive) data after the activation of
FileVault 2. We advised Apple about this problem on February 9, 2012
(ticket ID 191364581), and it was fixed in the next update.

4.3 Possible User Password Attacks

PBKDF2 is used to slow down brute-force attacks on user passwords.
Raeburn [18] reports that, for N iterations and a known salt, a 2 GHz
machine can perform approximately 217/N PBKDF2 iterations per sec-
ond. Therefore, the 2 GHz machine would require about 34 years to
brute force a FileVault 2 password using a data set of 232 words. How-
ever, if the password is a weak six-character common word, it could
be determined within five hours. This should be taken into considera-



Choudary, Grobert & Metz 361

tion before assuming that user data is completely secure simply because
FileVault 2 is enabled.

The details provided in this paper make it possible to verify that Fil-
eVault 2 users have secure passwords without requiring them to disclose
their passwords. A systems administrator could use a tool that brute
forces user passwords using a data set. If a password is revealed, then
the administrator could request the user to choose a better password and
perform the check again. This would ensure that users do not employ
known weak passwords with FileVault 2.

4.4 Extracting Keys from Memory

Halderman, et al. [13] have shown that is possible to extract encryp-
tion keys from memory under many circumstances. FileVault 2 is also
vulnerable to this attack: we could retrieve all the necessary keys from
memory using the standard GNU debugger (gdb).

Compared with Bitlocker [9] in the TPM mode, FileVault 2 is more
resistant to key extraction attacks when the computer is turned off.
This is because the volume master key is never loaded in memory unless
the user provides the correct authentication token. On the other hand,
Bitlocker loads the volume master key from the TPM without needing
the user password. Note that Bitlocker can also be used with a recovery
key instead of the TPM, but this is not very common.

Dornseif [7] has shown that keys can be extracted from memory using
FireWire in the DMA mode. This enables an attacker with physical ac-
cess to a running system to extract the memory contents, bypassing the
operating system and CPU because the transfer takes place via DMA.
Fortunately, Apple addressed this problem in the OS X 10.7.2 update [2].

5. Conclusions

This paper has presented the first detailed analysis of the FileVault 2
volume encryption system that was introduced in Mac OS X 10.7 (Lion),
including the key derivation mechanisms and the data structures needed
for decryption. As a result of the analysis, an open source cross-platform
library named libfvde was developed to decrypt and mount FileVault 2
encrypted volumes when the user password or recovery token are avail-
able. The library and the detailed documentation of the data structures
used by FileVault 2 are available at the project website [5]. Two ma-
jor points revealed by the security analysis are that the entropy of the
recovery password can be increased and that a portion of user data is
available as plaintext.



362 ADVANCES IN DIGITAL FORENSICS IX

Acknowledgements

We thank Darren Bilby for his support of this work. We also thank
Germano Caronni, Michael Cohen, Jan Monsch and Frank Stajano for
their comments. This research was supported by a Google Europe Fel-
lowship in Mobile Security awarded to Omar Choudary.

References

[1] Apple, Source Browser, Cupertino, California (opensource.apple.
com/source/xnu/xnu-1699.24.8/bsd/dev/random), 2010.

[2] Apple, About the security content of OS X Lion v10.7.2 and security
update 2011-006, Cupertino, California (support.apple.com/kb/
HT5002), 2011.

[3] B. Carrier, File System Forensic Analysis, Pearson Education, Up-
per Saddle River, New Jersey, 2005.

[4] Check Point Software Technologies, Check Point Full Disk En-
cryption, San Carlos, California (www.checkpoint.com/products/
full-disk-encryption), 2013.

[5] O. Choudary and J. Metz, libfvde: Library and tools to access File-
Vault Drive Encryption (FVDE) encrypted volumes (code.google.
com/p/libfvde), 2013.

[6] Dell, Credant Enterprise Edition for Mac, Round Rock, Texas
(www.credant.com/ products/cmg-enterprise-edition/cmg-en
terprise-edition-for-mac.html), 2013.

[7] M. Dornseif, Owned by an iPod, presented at the PacSec Confer-
ence, 2004.

[8] L. Dorrendorf, Z. Gutterman and B. Pinkas, Cryptanalysis of the
random number generator of the Windows operating system, ACM
Transactions on Information and System Security, vol. 13(1), article
no. 10, 2009.

[9] N. Ferguson, AES-CBC + Elephant Difusser: A Disk Encryption
Algorithm for Windows Vista, Technical Report, Microsoft, Red-
mond, Washington, 2006.

[10] N. Ferguson and B. Schneier, Practical Cryptography, Wiley, Indi-
anapolis, Indiana, 2003.

[11] C. Fruhwirth, New Methods in Hard Disk Encryption, Theory and
Logic Group, Institute for Computer Languages, Vienna University
of Technology, Vienna, Austria (clemens.endorphin.org/nmihde/
nmihde-A4-ds.pdf), 2005.



Choudary, Grobert & Metz 363

[12] Z. Gutterman, B. Pinkas and T. Reinman, Analysis of the Linux
random number generator, Proceedings of the IEEE Symposium on
Security and Privacy, pp. 371–385, 2006.

[13] J. Halderman, S. Schoen, N. Heninger, W. Clarkson, W. Paul, J.
Calandrino, A. Feldman, J. Appelbaum and E. Felten, Lest we re-
member: Cold boot attacks on encryption keys, Communications of
the ACM, vol. 52(5), pp. 91–98, 2009.

[14] B. Kalisky, PKCS #5: Password-Based Cryptography Specification
Version 2.0, RFC 2898, 2000.

[15] J. Kelsey, B. Schneier and N. Ferguson, Yarrow-160: Notes on the
design and analysis of the Yarrow cryptographic pseudorandom
number generator, Proceedings of the Sixth International Workshop
on Selected Areas in Cryptography, pp. 13–33, 2000.

[16] L. Martin, XTS: A mode of AES for encrypting hard disks, IEEE
Security and Privacy, vol. 8(3), pp. 68–69, 2010.

[17] National Institute of Standards and Technology, Specification for
the Advanced Encryption Standard (AES), Federal Information
Processing Standards Publication 197, Gaithersburg, Maryland,
2001.

[18] K. Raeburn, Advanced Encryption Standard (AES) Encryption for
Kerberos 5, RFC 3962, 2005.

[19] P. Rogaway, Efficient instantiations of tweakable block ciphers and
refinements to modes OCB and PMAC, Proceedings of the Tenth
International Conference on the Theory and Application of Cryp-
tology and Information Security, pp. 16–31, 2004.

[20] J. Schaad and R. Housley, Advanced Encryption Standard (AES)
Key Wrap Algorithm, RFC 3394, 2002.

[21] Sophos, SafeGuard Enterprise, Abingdon, United Kingdom (www.
sophos.com/en-us/products/encryption/safeguard-enterpri
se.aspx), 2013.

[22] Symantec, Symantec Drive Encryption, Mountain View, California
(www.symantec.com/drive-encryption), 2013.

[23] TrueCrypt Foundation, TrueCrypt (www.truecrypt.org), 2012.

[24] WinMagic, SecureDoc for Mac, Mississauga, Canada (www.winma
gic.com/products/full-disk-encryption-for-mac), 2013.


