
HAL Id: hal-01463210
https://inria.hal.science/hal-01463210

Submitted on 9 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Transformation of Models in an MDA Approach for
Collaborative Distributed Processes

Youssef Balouki, Abdessamed Balouki, Mohamed El Far, Abdelouahed
Kriouile

To cite this version:
Youssef Balouki, Abdessamed Balouki, Mohamed El Far, Abdelouahed Kriouile. Transformation of
Models in an MDA Approach for Collaborative Distributed Processes. 14th Working Conference on
Virtual Enterprises, (PROVE), Sep 2013, Dresden, Germany. pp.201-208, �10.1007/978-3-642-40543-
3_22�. �hal-01463210�

https://inria.hal.science/hal-01463210
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Transformation of Models in a MDA Approach

for Collaborative Distributed Processes

Youssef Balouki , Abdessamed Balouki ,

Mohamed El FAR , Abdelouahed Kriouile

 LAVETE, Dep of Mathematics & Computer Science,

 University HASSAN 1er Morocco.

{Balouki.youssef, Balouki, El_Far, Kriouile}@gmail.com

Abstract. This paper studies the specification, mapping and the

transforming of behavioral aspects of Open Distributed Processing

Information Language, within the context of Model Driven

Architecture. In order to specify the executable behavior of a system

and to make the processes of the Information executable and

controllable, the Reference Model for Open Distributed Processing can

be used as a meta-model for behavioral specifications. In the

Information language the behavior is specified in terms of schema

dynamic, processes, actions, state and the relationships between these

concepts. In this work we describe how behavior process can be generated

exploiting the benefits of a MDA approach. We define the behavior models by

using UML profile and their transformations into BPEL artifacts.

Keywords: RM-ODP, Information Language, Behavioral Concepts, BPEL

Language, UML Profile, MDA.

1 Introduction

The Reference Model for Open Distributed Processing (RM-ODP) [1-2] provides a

framework within which support of distribution, networking and portability can be

integrated. It defines a framework comprising five viewpoints, viewpoint language,

ODP functions and ODP transparencies. The five viewpoints, called enterprise,

information, computational, engineering and technology provide a basis for the

specification of ODP systems. The first three viewpoints do not take into account the

distribution and heterogeneity inherent problems. This corresponds closely to the

concepts of PIM (Platform Independent Model) and PSM (Platform Specific Model)

models in the OMG MDA architecture.

In this context we use in this paper the BPEL (Business Process Execution

Language for Web Services) (BPEL4WS or BPEL for short) to specify process

behavior based on actions, time and states in the context of ODP systems. The BPEL

is an XML-based standard for defining how you can combine Web services to

implement business processes [8]. It builds upon the Web Services Definition

202 Y. Balouki et al.

Language (WSDL) and XML Schema Definition (XSD). This article specifies the

behavior processes by the activity diagrams, and generates the corresponding BPEL

and computational files to implement that process. This capability is used to highlight

some benefits of the Object Management Groups (OMG) Model Driven Architecture

(MDA) initiative: raising the level of abstraction at which development occurs;

which, in turn, will deliver greater productivity, better quality, and insulation from

underlying changes in technology.

The paper is organized as follows. Section 2 introduces, both BPEL and the core

behavior concepts (time, action, behavior and process). Section 3 describes and

specifies the behavior by the activity diagrams. In Section 4, we define the mapping

from the concepts of behavior Information language to BPEL concepts and we

present the syntax and the structure of a BPEL Behavior process. We focus on

behavioral constrains. A conclusion ends the paper.

2 Preliminaries

2.1 BPEL

Web services are a set of technologies allowing applications to communicate with

each other across the Internet. Among the technologies used are the Extensible

Markup Language (XML) [8], the Web Service Description Language (WSDL) [10]

and the BPEL, also known as BPEL4WS, built on IBM's WSFL (Web Services Flow

Language) and Microsoft's XLANG (Web Services for Business Process Design). It

combines the features of a block structured process language (XLANG) with those of

a graph-based process language (WSFL). BPEL is intended to describe a business

process in two different ways: executable and abstract processes. An abstract process

is a business protocol specifying the message exchange behavior between different

parties without revealing the internal behavior of any of them. An executable process

specifies the execution order between a number of constituent activities, the partners

involved, the message exchanged between these partners and the fault and exception

handling mechanisms.

A composite service in BPEL is described in terms of a process. Each element in

the process is called an activity. BPEL provides two kinds of activities: primitive

activities and structured activities [13].

2.2 The Behavioral Concepts in Information Language

The individual components of a distributed system must share a common

understanding of the information they communicate when they interact [3-5]. Some of

these items of information are handled by many of the objects in the system. To

ensure that the interpretation of these items is consistent, the information language

defines the semantics of information and the semantics of information processing in

an ODP system in terms of a configuration of information objects, the behavior of

those objects, and environment contracts for the objects in the system.

Transformation of Models in a MDA Approach 203

The information specification comprises a set of related schemata, namely, the

invariant, static and dynamic schemata.

An invariant schema is a set of predicates on one or more information objects

which must always be true. The predicates constrain the possible states and state

changes of the objects to which they apply. ODP also notes that an invariant schema

can describe the specification of the types of one or more information objects that will

always be satisfied by whatever behaviour the objects might exhibit.

A static schema is a specification of the state of one or more information objects, at

some point in time, subject to the constraints of any invariant schemata.

A dynamic schema is a specification of the allowable state changes of one or more

information objects, subject to the constraints of any invariant schemata.

We consider the basic set of modeling concepts necessary for behavior specification:

- Action: a model of something that happens in the real world. An action in the

information viewpoint is associated with at least one information object.

- Interactions: an action always takes place with the participation of the environment

of the object. Objects can only interact at interfaces.

- Behavior of an information object: a collective behavior composed of the actions in

which the objects participate in fulfilling the roles of the system, together with a set of

constraints on when these actions may occur, it may be interesting to specify which

actor initiates that action.

- Process: identifies an abstraction of the behavior that includes only those actions

that are related to achieving some particular sub-objective within the system.

Processes decompose the behavior of the system into steps.

We represent a concurrent system as a triple consisting of a set of behavior, a set of

process and a set of action. Each behavior is modeled as a finite or infinite sequence

of interchangeable behavior and actions. In figure 1, we define a model to be the ODP

information viewpoint specification. That is, a set of information objects, and their

relationships and behaviour.

The concept of time dependence is given in "Specification concepts" (RM-ODP

2.9), we define the semantics of OCL precondition and postcondition by applying the

minimal sets of instances after execution of operation [14] [16].

context Time inv :

forall(o:InformationObject ,t:Time | t.instant ->notEmpty implies o.state ->notEmpty)

context Precondition inv :

Forall (prec: Dynamicschema.Precondition , o : InformationObject|exists(s : State) |

o.mappedTo = prec and o.state_start = s)

context Postcondition inv :

forall (postc: dynamicschema.Postcondition , o : InformationObject | exists(s : State) |

o.mappedTo = postc and a.state_end = s)

204 Y. Balouki et al.

InformationObjectClass

InformationObject

State

DynamicSchema

StaticSchema

InvariantSchema

 0..*

describer

Cause 0..*

Statechange

Action

ActionType

1 Change

1..*

1..* participant

0..*

Constrainer

 0..*

 1..* specifier

0..*

Behavior
0..* part of

1..* set of

Start End

 1 1

Step Process
1..* part of

0..* graph

 Fig. 1. Core Behavior Concepts

3 UML Profile for Behavior Process

Taking an object-oriented approach, the Unified Modeling Language (UML) is often

used to model the relevant aspects of the behavior. In UML, an object is an entity

with a well-defined boundary and identity that encapsulates state and behavior. State

is represented by attributes and relationships. The behavior of UML object expressing

an ODP information object is expressed by state machines. The scope of this article is

mainly centered on stereotypes. Stereotypes are a way of categorizing elements of a

model. We can combine a set of these stereotypes in a Profile. A UML Profile is used

to define a specific set of extensions to the base UML in order to represent a

particular domain of interest.

This section introduces a UML Profile which supports modeling with a set of

semantic constructs that correspond to those in the Business Process Execution

Language for behavior in Information language (see table 1).

Transformation of Models in a MDA Approach 205

Table 1. Behavior concepts to UML mapping overview

In the UML profile, a process is represented as a class with the stereotype

<<Process>>. The stereotype «IV_Process» extends the metaclass Activity with

multiplicity [0..1]. It is intended to capture the semantics of a Process in the RM-ODP

information language. The attributes of the class correspond to the state of the process

(variables in BPEL 1.1). The UML class representing the behavior process is shown

in Figure 2.

Fig. 2. UML Profile for the Behavior Process

4. Generating a BPEL Process from a UML Model

The Model Driven Architecture (MDA) [15] provides an approach for specifying a

system independently of the platform that supports it; specifying platforms; choosing

a particular platform for the system; and transforming the system specification into

one for a particular platform.

Behavior Concepts Profile Construct

Process << process>> class

Behavior Activity graph on a <<process>> class

Action <<metaclass>> signal

Role <<partner>> class

static Schema << metaclass >> statemachine

Invariant Schema << metaclass >> constraint

dynamic Schema << metaclass >> package

<<IV_Process>>

BehaviorProcess :: DynamicSchema

+request :informationobject

+pre- conditions : constraint

+post-conditions : constraint

+locationInTime : Data

+error :requesterror

206 Y. Balouki et al.

4.1 Mappings between UML and BPEL

The UML profile for automated behavior processes expresses that complete

executable BPEL artifacts can be generated from UML models. Table 2 shows an

overview of mapping from the profile to BPEL covering the subset of the profile

introduced in this article [15].

Table 2. UML to BPEL mapping overview

BPEL is an XML representation of an executable process which can be deployed

on any process motor. The atomic element of a process BPEL is an “activity”, which

can be the send of a message, the reception of a message, the call of an operation

(sending of a message, makes an attempt of an answer), or a transformation of data.

A process BPEL defines, in XML, the activities realized by the framework of the

behavior process execution. In the following we describe its structure and syntax.

< IV_behavior >

 < roles /> � definition of the actors

 <containers/> � definition of the containers of the data

 <invariant schema /> � A set of predicates which must always be true.

 <static schema /> � A configuration of information objects.

 <transitioncondition>

 <dynamic schema /> � A state changes of one or more information objects.

 </transitioncondition>

 </IV_behavior >

 <IV_process >

 < partners /> � definition of the partners (actions)

 <containers/> � definition of the containers of the data

 <sequence />

 <receive /> � reception of a request

<assign /> � transformation of the data

 <invoke /> � call of an action

 <reply /> � sending of an answer

 </sequence>

</IV_process>

Profile Construct BPEL Concept

<< process>> class BPEL process definition

Activity graph on a <<process>> class BPEL activity hierarchy

<<process>> class attributes BPEL variables

Hierarchical structure and control flow BPEL sequence and flow activities

<<receive>>,<<reply>>,<invoke>>activities BPEL activities

Transformation of Models in a MDA Approach 207

<schema> name = "nameschema"

 <process name ="process"/>

 < action name = "action"/>

 <constraint type ="pre-conditions"/>

 <constraint type ="post-conditions"/>

 </schema>

4.2 Transforming the process Specification into BPEL

 Model transformation is the process of converting between two models describing

different aspects or levels of detail of the same thing: UML model files which can be

opened and modified with tools [12], and XML files containing the XMI version of

the UML models and which are exported by them. In figure 3, we can see that this

corresponds to the UML models, or the XMI output of these tools [8-9].

Figure 3 uses a UML Activity Diagram to show the overall process of

transforming the files; the information specification is related to a computation

independent model (CIM); The information and computational specifications together

form a (set of) platform independent model(s) (PIM).The main stages are:

1. Specifying the UML model (CIM)

2. Exporting the UML Diagrams to XMI (PIM)

3. Generating the BPEL process, Actions, and behavior files(PIM)

4. Creating a Database Information Object

5. Deploying these on the BPEL motor (PSM).

Fig. 3. Developing a process

UML model

OCL Constraints

XML files

UML Tools

XSD Schema Interface Definition BPEL Process

BPEL runtime DataBase

 CIM

 PIM

 PSM

208 Y. Balouki et al.

5 Conclusion

This work introduces the modeling, mapping and transformation of behavioral aspects

of Open Distributed Processing (ODP) Information Language, within the context of

Model Driven Architecture (MDA). In particularly, we have demonstrated how to

model a UML profile for automated behavior processes with UML to BPEL

translator. The profile allows developers to use UML skills and tools to develop

behavior processes using BPEL. This approach enables service-oriented BPEL

components to be incorporated into an overall system design utilizing existing

software engineering practices.

References

1. ISO/IEC. : Basic RM-ODP-Part1: Overview and Guide to Use. ISO/IEC CD 10746-1,

1994

2. ISO/IEC. : RM-ODP-Part2: Descriptive Model. ISO/IEC DIS 10746-2, 1994.

3. ISO/IEC. : Use of UML for ODP system specifications. ISO/IEC 19793, 2006.

4. ISO/IEC. : The ODP Trading Function. ISO/IEC JTC1/SC21, 1995.

5. ISO/IEC. : RM-ODP Enterprise Language. ISO/IEC 15414, July 2006.

6. J. Rumbaugh and all. : The Unified Modeling Language. Addison Wesley, 1999.

7. M. Bouhdadi, Y.Balouki. : Meta-modelling Semantics of Behavioral Concepts for Open

Virtual Enterprises.ECC 2007, Athens 25-27 Sep, Springer Verlag.

8. Y.Balouki and M.Bouhdadi. : Using BPEL for Behavioural Concepts in ODP Enterprise

Language. Virtual Enterprises and Collaborative Networks, IFIP, Vol. 283, pp. 221-232,

Springer, 2008.

9. E. Evans, R. France, K. lano, B. Rumpe. : Meta-Modeling Semantics of UML. In H.

Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral specifications for businesses and

systems, Kluwer Academic Publishers, Norwell, MA, September 1999. Chapter 4

10. B. Rumpe.: Agile Modeling with UML, ‘’ LNCS vol. 2941, Springer, 2004, pp. 297-309.

11. L. Briand. : A UML-based Approach to System testing. LNCS vol. 2185. Springer,

2001, pp. 194-208,

12. B. Rumpe. : Executable Modeling UML. A Vision or a Nightmare?. In: Issues and

Trends of Information technology management in Contemporary Associations, Seattle,

Idea Group, London, pp. 697-701.

13. Dimitris Karagiannis and al.: Business-oriented IT management developing e-business

applications with E-BPMS. ICEC 2007, 97-100

14. M. Broy. : Formal treatment of concurrency and time. Software Engineers’s Reference

Book, Oxford Butterworth-Henenmann (1991).

15. Keith Mantell: From UML to BPEL Model Driven Architecture in a Web services world.

Report IT Architect, IBM 2003.

16. M. Bouhdadi, Y. Balouki. :’Meta-modelling Semantics of Behavioral Concepts for Open

Virtual Enterprises. : ECC 2007, Athens 25-27 Sep, Springer Verlag.

