
�>���G �A�/�, �?���H�@�y�R�9�e�j�3�j�R

�?�i�i�T�b�,�f�f�?���H�X�B�M�`�B���X�7�`�f�?���H�@�y�R�9�e�j�3�j�R

�a�m�#�K�B�i�i�2�/ �Q�M �N �6�2�# �k�y�R�d

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�.�B�b�i�`�B�#�m�i�2�/ �m�M�/�2�` �� �*�`�2���i�B�p�2 �*�Q�K�K�Q�M�b���i�i�`�B�#�m�i�B�Q�M�% �9�X�y �A�M�i�2�`�M���i�B�Q�M���H �G�B�+�2�M�b�2

�1�t�T�H�Q�`�B�M�; �h�B�K�2�H�B�M�2�@�"���b�2�/ �J���H�r���`�2 �*�H���b�b�B�}�+���i�B�Q�M
�_���}�[�m�H �A�b�H���K�- �A�`�7���M ���H�i���b�- �J�/�X �A�b�H���K

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�_���}�[�m�H �A�b�H���K�- �A�`�7���M ���H�i���b�- �J�/�X �A�b�H���K�X �1�t�T�H�Q�`�B�M�; �h�B�K�2�H�B�M�2�@�"���b�2�/ �J���H�r���`�2 �*�H���b�b�B�}�+���i�B�Q�M�X �G�2�+�? �C�X
�C���M�+�x�2�r�b�F�B�c �>�2�M�`�v �"�X �q�Q�H�7�2�c �a�m�D�2�2�i �a�?�2�M�Q�B�X �k�3�i�? �a�2�+�m�`�B�i�v ���M�/ �S�`�B�p���+�v �S�`�Q�i�2�+�i�B�Q�M �B�M �A�M�7�Q�`�K���i�B�Q�M
�S�`�Q�+�2�b�b�B�M�; �a�v�b�i�2�K�b �U�a�1�*�V�- �C�m�H �k�y�R�j�- ���m�+�F�H���M�/�- �L�2�r �w�2���H���M�/�X �a�T�`�B�M�;�2�`�- �A�6�A�S ���/�p���M�+�2�b �B�M �A�M�7�Q�`�K���@
�i�B�Q�M ���M�/ �*�Q�K�K�m�M�B�+���i�B�Q�M �h�2�+�?�M�Q�H�Q�;�v�- ���A�*�h�@�9�y�8�- �T�T�X�R�@�R�j�- �k�y�R�j�- �a�2�+�m�`�B�i�v ���M�/ �S�`�B�p���+�v �S�`�Q�i�2�+�i�B�Q�M �B�M
�A�M�7�Q�`�K���i�B�Q�M �S�`�Q�+�2�b�b�B�M�; �a�v�b�i�2�K�b�X �I�R�y�X�R�y�y�d�f�N�d�3�@�j�@�e�9�k�@�j�N�k�R�3�@�9�n�R�=�X �I�?���H�@�y�R�9�e�j�3�j�R�=

https://hal.inria.fr/hal-01463831
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Exploring Timeline-Based Malware Classification

1Rafiqul Islam, 1Irfan Altas, and 1,2Md. Saiful Islam

1Charles Sturt University, Australia
{mislam, ialtas}@csu.edu.au

2Swinburne University of Technology, Australia
mdsaifulislam@swin.edu.au

Abstract. Over the decades or so, Anti-Malware (AM) communities
have been faced with a substantial increase in malware activity, includ-
ing the development of ever-more-sophisticated methods of evading de-
tection. Researchers have argued that an AM strategy which is success-
ful in a given time period cannot work at a much later date due to the
changes in malware design. Despite this argument, in this paper, we
convincingly demonstrate a malware detection approach, which retains
high accuracy over an extended time period. To the best of our
knowledge, this work is the first to examine malware executables col-
lected over a span of 10 years. By combining both static and dynamic
features of malware and cleanware, and accumulating these features
over intervals in the 10-year period in our test, we construct a high ac-
curacy malware detection method which retains almost steady accuracy
over the period. While the trend is a slight down, our results strongly
support the hypothesis that perhaps it is possible to develop a malware
detection strategy that can work well enough into the future.

Keywords: Timeline, Malware Detection, Static and Dynamic Features.

1! Introduction

Malware is one of the biggest challenges all over the world nowadays among the
Internet users. Malware writers use various obfuscation techniques to transform a
malicious program into undetectable variants with the same core functionalities of the
parent malware program [1], [4], [7], [13], [15], [21]. Anti-Malware (AM) communi-
ties are trying hard to combat malware obfuscation techniques adopted by the mal-
ware writers by discovering the behavioral patterns of their parent malwares. Howev-
er, one of the biggest challenges is that an AM strategy that has been found to be suc-
cessful in a given time period cannot work at a much later time. This philosophy is
supported by the works found in [1], [2], [9], [15], [16], [20] and [21], which indicates
that current techniques fail to find the distinctive patterns of malicious software which
can be used to identify future malwares. The argument is that malware evolves with
time and eventually becomes unrecognizable from the original form; in addition com-

pletely new malware is designed which is unlike any known malware and so would
not be detected by anti-virus software constructed to detect known types of malware.
In fact, the assumption that malwares which are completely unlike earlier malwares
designed on a major scale is known to be false as indicated by the statistics in [3]
showing that barely 25% of malwares found in 2006 are not variants of known mal-
wares.

Despite the strong support in the literature of the assumption that malware detec-
tion methods cannot easily detect future malware, in this paper, we convincingly
demonstrate that perhaps, it is possible to develop a malware detection strategy which
can retain high accuracy over an extended time period. To the best of our knowledge,
this paper is the first to examine malware executables collected over a span of 10
years. The key contributions of this paper are two-folds:
(a)!A novel approach to feature collection by accumulating malware features over

time segments of the 10 years span.
(b)!A novel malware detection method retaining steady accuracy over an extended

period of time.
The rest of the paper is organized as follows: Section 2 provides a review of the lit-

erature and Section 3 describes the set-up for the testing. In Section 4, we provide a
detailed discussion of the experiment and present the results and in Section 5, we
discuss the analysis and its implications for future work.

2! Related Work

A substantial research has been done on malware classification and detection. In
this section, we present only a few of the existing works that are either closely related
to or motivate us to conduct our research in this paper. The study in [20] investigates
malicious attacks on several websites by creating web honey pots and collecting web-
site-based malware executables over a period of five months. In their study, they col-
lect and analyze malware samples using 6 different antivirus programs, and conduct
the same experiment four months later using the updated versions of the 6 programs
to determine their efficacy. Additionally, the work of Rajab et al. [10] also focuses on
mitigating web-based malware. They study a dataset collected over a period of four
years and demonstrate that existing malware characteristic can aid in detecting future
malware. Both aforementioned works demonstrate that, some anti-virus software can
significantly improve detection rates with training on older malware.

The research conducted by Rosyid et al. [11] is focused on detecting malicious at-
tack patterns in botnets attacking a honeypot during the year 2009. After extracting
the log files of malware sequences, they then apply the PrefixSpan algorithm to dis-
cover subsequence patterns. The authors extend their work by identifying attack pat-
terns based on IP address and timestamp. The authors argue that the signature of a
single malware file is not enough to detect the complex variants of the attacks by
botnets. In [1], the authors apply a dynamic method for classifying malware, consid-
ering the interactions between the operating system and malicious programs as behav-
ioral features. In their study they use three different evaluation techniques: complete-
ness, conciseness, and consistency. The authors mention that one limitation of their

methodology is the failure to Òdetect fine-grained characteristics of the observed be-
haviorsÓ.

Another group of researchers, [6], build their malware detection and classification
framework based on comparisons of extracted strings using static analysis. They
claim that the similarity between two files can be determined by comparing the char-
acter strings, which in turn is used to identify and determine whether the two instanc-
es are variants. The authors present a three-step methodology of extraction, refine-
ment and comparison. The authors show that if a mutated instance of malware is de-
tected, it is reflected as a huge peak under the respective malware family.

In [5], the authors use a combination of static and dynamic analysis to achieve a
high level of accuracy over an 8 year time period. We are not the first to integrate
dynamic with static features however (see for example [12]), though we are the first
to use this method applied over a long time period. In order to understand the evolu-
tion of malware over a long period of time and its effects on future malware, in this
paper, we consider two types of analysis: static and dynamic, as these features are
predominant for malware analysis in the literature.

3! Experimental Setup

3.1! The methodology

Static and dynamic analyses are two of the most popular forms of malware analysis
techniques predominant in the literature [1], [5], [6], [9], [12], [17], [18], [19], [20].
However, each of these analysis techniques comes with its own merits and demerits.
Static analysis can analyze a wide spectrum of possible execution paths of an execut-
able, thus providing a good global view of the whole executable and of the entire
program logic without running it. But, static analysis is susceptible to inaccuracies
due to obfuscation and polymorphic techniques.

On the otherhand, dynamic analysis monitors the behavior of the binary executable
file during its execution, which enables it to collect a profile of the operations per-
formed by the binary thus offering potentially greater insight into the code itself. The
main limitation of dynamic analysis is that analysis results are only based on malware
behavior during a specific execution run. Since some of the malwareÕs behaviour may
be triggered only under specific conditions, such behaviour would be easy to miss
with only a single execution.

In our experiments, we extract both static and dynamic features from the malware
and cleanware files collected over the 10 years period and learn our classifier to detect
future malwares. More specifically, we extract from each executable (a) static fea-
tures: printable string information (PSI) and function length frequency (FLF), (b)
dynamic features: API calls including their parameters and (c) integrated features: a
combination of the two static and the dynamic features. The WEKA library of data
mining algorithms [8] is used to learn the classifiers and derive the detection results
based on the extracted feature vectors as input.

3.2! Data (malware and cleanware) collection

The malware executables used in the experiment were collected from CAÕs VET
Zoo1 over a span of 8 years (2002-2010) and we collect (2011-2012) manually from
open sources (www.offensivecomputing.net, http://www.virussign.com); the clean-
ware executables were collected manually from various versions of Win32 based
systems. Fig. 1 indicates the dates at which malware files were collected.

Fig. 1. Collection of malware executables from 2002 to 2012

The total numbers of malware and cleanware executables, used in our experiments,
are 2617 and 541 respectively. Table 1 shows the executables family by family.

3.3! Timeline data preparation

The date of a malware file was associated with the file when the file was collected.
We exported all files, along with their dates, into our Ida2DBMS schema [18] and
based on the dates broke the data into groups as described in Fig. 2.

To generate groups of malware for use in the testing, we begin with the earliest
malware and add month by month across the timeline until all data are grouped. As
the first data group, MG1, we take the earliest-dated 10% of the files. There are 262
executables in this group which covers the period from October 2002 to December
2004. The second data group, MG2, comprises the data collected during the period
October 2002 to January 2005, and so on. When too few files appear in a subsequent
month to justify including that month as a group, we jump to the following month. In
all, this results in 65 malware data groups which are labeled as MG1, MG2,É, MG65.
Fig. 2 indicates the spread of malware across the sixty five groups with each bar cor-
responding to a group.

Throughout the test, the set of 541 WIN32 cleanware files is treated as a single
group, cleanware group (CG). However, when it is tested against a particular malware
group, depending on the comparative size of the two groups, the cleanware group may
be divided into subgroups.

1 www.ca.com.au

"

#$

%$$

!" #$%&#!' !" #()* #!+ !" #,-. #!/ !" #$%&#!0 !" #()* #!1 !" #,-. #"" !" #$%&#"'

N
um

be
r o

f E
xe

cu
ta

bl
es

Timeline

