
HAL Id: hal-01466468
https://inria.hal.science/hal-01466468

Submitted on 13 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Node Ranking in Wireless Sensor Networks with Linear
Topology

Rodrigue Domga Komguem, Razvan Stanica, Maurice Tchuente, Fabrice
Valois

To cite this version:
Rodrigue Domga Komguem, Razvan Stanica, Maurice Tchuente, Fabrice Valois. Node Ranking in
Wireless Sensor Networks with Linear Topology. WD 2017 - 9th IFIP Wireless Days, Mar 2017,
Porto, Portugal. pp. 1-6. �hal-01466468�

https://inria.hal.science/hal-01466468
https://hal.archives-ouvertes.fr


Node Ranking in Wireless Sensor Networks with

Linear Topology

Rodrigue Domga Komguem∗†‡, Razvan Stanica∗, Maurice Tchuente†‡, Fabrice Valois∗

∗Université de Lyon, INSA Lyon, CITI-Inria, F-69621, Villeurbanne, France
†Université de Yaoundé I, CETIC, LIRIMA, Faculté des Sciences, BP 812, Yaoundé, Cameroun

‡Sorbonne Universités, UPMC Univ Paris 06, UMMISCO-IRD, F-93143, Bondy, France

rodrigue.domga-komguem@insa-lyon.fr

Abstract—In wireless sensor networks with linear topology,
knowing the physical order in which nodes are deployed is useful
not only for the target application, but also to some network
services, like routing or data aggregation. Considering the limited
resources of sensor nodes, the design of autonomous protocols to
find this order is a challenging topic. In this paper, we propose
a distributed and iterative centroid-based algorithm to address
this problem. At each iteration, the algorithm selects two virtual
anchors and finds the order of a subset of nodes, placed between
these two anchors. The proposed algorithm requires local node
connectivity knowledge and the identifier of the first sensor node
of the network, which is the only manually configured parameter.
This solution, scalable and lightweight from the deployment and
maintenance point of view, is shown to be robust to connectivity
degradation, correctly ordering more than 95% of the nodes,
even under very low connectivity conditions

Keywords—Linear Wireless Sensor Networks, Nodes ranking,
Self-Configuration, Centroid-Based Localization.

I. INTRODUCTION

The topology and architecture of wireless sensor networks
(WSN) generally depend on the target application and the
geographical area in which nodes are deployed. A linear WSN
(LWSN) is a special case, where the physical topology of the
network is a line [1]. The applications of LWSN are diverse,
e.g. large infrastructure monitoring, such as bridges [2] and
dams [3], road traffic observation [4], or border control [5].
Node localization information is needed in LWSN not only for
network operations (e.g. geographic routing and data collection
mechanisms), but also at the application layer: if a problem is
detected by one of the few hundred sensors monitoring a 10 km
long bridge, node location information is required for an inter-
vention. While precise coordinates (in the range of cm) might
be required in some scenarios, a relative ranking information
is often enough for most LWSN applications. Considering a
deployed LWSN, a sensor’s rank is defined as the number
of nodes closer to the origin compared with that sensor. In
this paper, we are interested in autonomous solutions for node
ranking in LWSN; indeed, manually assigning coordinates, or
ranks, during the node deployment phase is an error prone,
time consuming operation, also requiring qualified workforce.

In general, the evaluation metric for localization algorithms
is the localization error, i.e. the distance between the real
and the estimated coordinates. However, our focus is on node
ranking, a less precise, but usually sufficient localization in-
formation. Theoretically, the received signal strength indicator
(RSSI) is a decreasing function of the distance, an assumption

largely used for node ranking in a LWSN [10]–[13]. Never-
theless, multiple studies show that, because of the hardware
quality or constraints related to the environment (e.g. obstacles
and climate conditions), the RSSI by itself does not provide
enough information for correct range estimation. Rather than
using information provided by the hardware, Lotker et al.
[14] use neighborhood information to rank nodes in a LWSN.
The authors propose a centroid-based approach, in which they
assume that the first and the last node of the network are
anchors with known positions. In the proposed distributed
algorithm, they also assume that there is a global clock for
node synchronization. Inspired by [14], we prove in this paper
that it is possible to rank nodes in a LWSN knowing only the
first node of the network, relaxing the two-anchors constraint.
Based on this result, we propose an iterative algorithm for node
ranking in a LWSN where, in each iteration, a virtual anchor
is selected, allowing to correctly rank more and more nodes in
the network. Moreover, unlike the solution proposed in [14],
our iterative algorithm does not require any global clock for
node synchronization. To understand the impact of parameters
on system performance when a LWSN is deployed and to find
some guidelines for network deployment, we conduct a series
of simulations to investigate the system behavior when using
our centroid-based technique.

In the remainder of this paper, we start by formulating the
node ranking problem in LWSN in Section II and continue
with a discussion of related work in Section III. In Section
IV we discuss the usage of a single anchor to rank nodes, an
idea used in our iterative algorithm, presented in Section V.
We evaluate the performance of the centroid-based algorithm
in Section VI, before concluding in Section VII.

II. PROBLEM FORMULATION

We consider a network consisting of N sensors (also called
”nodes” or ”sensor nodes” in the following), s0, s1, . . . , sN−1,
uniformly deployed along a line in this order, i.e si−1 is the ith

sensor of the network. We denote by G = (S,L) the directed
graph associated to the network. The vertices S of this graph
correspond to the sensor nodes and there is an edge (si, sj) ∈
L whenever sj can receive messages from si. We denote by
Γ(sj) the direct (or one-hop) neighbors of a sensor sj , i.e
all the nodes si such that (si, sj) ∈ L, while h(si, sj) is the
number of hop between sensors si and sj . We denote by xi ∈
R the estimated one-dimensional coordinate of si. Sensor s0,
the first sensor of the line, is considered as the sink, with a
well known coordinate x0 = 0. In this paper, we denote by ∆



the degree of the sink s0.

The inputs of our problem are the network connectivity
graph G and the sink s0. Given these inputs and a node si, we
define the rank (or the position) of si as the number of sensors
deployed between s0 and si. The question is whether we can
correctly rank each sensor in the network. Therefore, the output
of the problem is a sequence of sensors, s(0), s(1), . . . , s(N−1).
An ideal solution for this problem would produce a node
sequence which corresponds to the ground-truth, i.e. s(1) =
s1, . . . , s(N−1) = sN−1.

For performance evaluation, we use the ratio of correctly
ranked pairs of nodes. For any pair of nodes (si, sj), the
sensors are deployed in a given order in the network: either si
is located before sj , in which case i < j, or the opposite. In the
output sequence, the pair (si, sj) is well ranked if the order of
the two nodes is the same as in the real deployment. Therefore,
the ratio of correctly ranked pairs of nodes, r, is defined as:
r = Cok

C
, where Cok is the number of well ranked pair of nodes

and C is the total number of pairs of nodes in the network. A
high value of r means an output sequence of good quality, with
r = 1 for a perfect order. Because of the unpredictable and
unstable nature of links in WSN, two problems can appear:
the ranking of two nodes can be reversed, or a node might be
entirely absent from the output sequence. The proposed metric
is interesting since it accounts for both these problems.

III. RELATED WORK

Node localization is a related and widely studied subject
in the field of WSN. Most localization solutions use ranging
techniques based on measurements provided by the hardware:
the angle of arrival (AoA), the time of flight (ToF), the RSSI
[6], or the phase difference between transmitter and receiver
[7]. A second class of localization approaches uses network
topology [8] or neighborhood correlation [9] information to
estimate the distance between nodes.

Regarding node ranking in LWSN, most of the existing so-
lutions make the assumption that the strength of a radio signal
decreases with the distance between the two communicating
nodes, meaning that the closest neighbor always produces the
highest RSSI value. In [10], the authors propose to randomly
select a node and try, from it, to build a sequence containing
all nodes. In [11], an ordered matrix is used instead. Each
row of the matrix is for a node and contains the ordered
list of neighbors of that node. The neighbors are ranked in
the decreasing order of the measured RSSI. Such an ordered
matrix avoids to test all the possible permutations, as in [10].
In [12], the first node is known and authors also propose
mechanisms to handle exceptions, which occur when the
output sequence does not contain all the nodes.

These simple RSSI-based approaches do not work very
well in practice, where the radio signal between two nodes
propagates over multiple paths, either constructive or destruc-
tive. Therefore, the idea of frequency diversity is exploited
in [13], where nodes transmit and measure the RSSI on 16
different frequency channels. The authors propose to build a
probability tree using the maximum RSSI measured on all
these frequencies, the node ranking being given by the path
with the maximum joint probability. However, the evaluation
of this protocol on a testbed, during a working day, shows that

surrounding WiFi networks have a significant negative impact
on its performance.

Instead of using a metric provided by the hardware, a
neighborhood-based solution is proposed in [14]. In this so-
lution, the position of a node is estimated as the centroid
relative to its neighbors, the idea being to bring physically
connected neighbor nodes closer to one another in terms
of virtual coordinates. The same idea, illustrated in Figure
1, is also exploited in [15], for the case of 2-dimensional
networks. Assuming a simple 1-dimensional topology with
only five nodes, as in Figure 1, the authors consider that
the positions and the coordinates of nodes s0 and s4 are
known: x0 = 0 and x4 = d, d > 0. The coordinates of
nodes s1, s2 and s3 are initially unknown, and set to 0. Nodes
begin by discovering their neighbors (and the coordinates of
these neighbors), building a connectivity graph, as in Figure
1a. Once the neighbors are known, each of the nodes s1, s2
and s3 sets its coordinate to the average of its neighbors
coordinates. We thus have x1 = 0, x2 = d/4 and x3 = d/3,
as shown in Figure 1b. These new coordinates are announced
to the neighbors and, after a second computation, we have
x0 < x1 < x2 < x3 < x4, as shown in Figure 1c, which
gives the correct rank of nodes in the network. In [15], nodes
initialize their coordinates with random values instead of 0.
The fact of using fixed or random initial coordinates does not
affect the ranking performance of the centroid algorithm, but
only its convergence time.

S0 S1 S2 S3 S4

S0 S1 S2 S3 S4

S0 S1 S2 S3 S4

(a)

(b)

(c)

Fig. 1: The centroid-based algorithm proposed in [14]: (a)
After neighbors discovery : the coordinates of nodes s1 − s3
are unknown (b) Nodes s2 and s3 calculate their coordinates
(c) Node s1 calculates its coordinate

As explained, in [14], sensors s0 (the first node) and sN−1

(the last node) of the network have known coordinates and they
are used as anchors. Moreover, all nodes are synchronized by a
global clock, used to compute the beginning of each iteration.
In each iteration, all the nodes broadcast their coordinates
to their neighbors. The two anchors check whether all their
neighbors have non-null coordinates and, when this is true,
they broadcast a STOP message, which will be forwarded over
the whole network in the following iterations. When a sensor si
receives a STOP message from both anchors, it stops updating
its coordinate. The coordinate of sensor si at iteration t, is
given by:

xt
i =

∑
sk∈Γ(si)

xt−1
k

|Γ(si)|
(1)



Considering a unit disk graph (UDG) model for node
connectivity, Lotker et al. [14] prove that, after h(s0, sN−1)+1
iterations, their solution produces the correct order of nodes in
the network. Two important observations can be made. First of
all, this solution only produces the correct ranking; converging
to stable values for the virtual coordinates might require extra
iterations. Second, this result is only true for LWSN having a
number of nodes larger than 2∆. Indeed, if there are less nodes
in the network, some of them will have the same neighborhood
under the UDG assumption, and the algorithm will produce
the same coordinate for these nodes, as we show in the next
section.

IV. FROM TWO TO ONE ANCHOR SOLUTION

We are interested in energy-efficient, lightweight and self-
configured protocols for node ranking in a LWSN, where the
number of parameters manually configured during network
deployment is minimized. Therefore, we begin by investigating
the consequences of an incorrectly configured second anchor
in the solution proposed by Lotker et al. [14]. However,
we slightly modify the stopping condition, as described by
Algorithm 1. In this modified algorithm, an anchor sends a
STOP message when the coordinates of its neighbors converge
to a stable value. As the coordinates of all non-anchor nodes
are initialized to 0, it is easy to prove, by induction on t, that
∀j, 0 < j < k, xt+1

j ≥ xt
j and xt

j < xk, where sk is the second
anchor. These two conditions are sufficient to guarantee that
the coordinates will converge to a value and the sinks will send
the STOP messages.

Algorithm 1 Modified ranking algorithm for anchor sa

1: Transmit the sa coordinate (xa)
2: if For All si ∈ Γ(sa), x

t
i − xt−1

i < ǫ then
3: Transmit STOPa

4: end if

Using a dedicated linear network simulator, we evaluate the
performance of the centroid-based approach when the second
anchor is incorrectly defined and under varying communication
range conditions. In a first step, we consider an UDG model,
i.e two nodes are able to communicate if the distance between
them is less than the communication range R. With this
model, links between nodes are then symmetric. We consider
a network of 21 nodes linearly and uniformly deployed with a
fixed distance of 5 m between two consecutive sensors. Thus,
sensors are deployed in the order s0, s1, . . . , s20. To take into
account node degree, we vary R from 10 m to 100 m. This
allows to have a network diameter range from 1 to 10 hops.
For all simulations, s0 is considered as the first anchor. The
results are shown in Figure 2.

Figure 2a corresponds to a communication range of 25 m
(i.e. ∆ = 4). In this configuration, sensors from s1 to s20,
one after another, are setup as the second anchor. On this
figure, the x-axis corresponds to the position of the second
anchor, e.g. position 3 means that sensor s3 is configured
as the second anchor. The main message highlighted by this
figure is that, when the sensor at the position k (sensor sk) is
configured as the second anchor, the estimated ranks of sensors
s1, s2, . . . , sk−1 are always correct.

1 3 5 7 9 11 13 15 17 19
Position of the second anchor

0
2
4
6
8

10
12
14
16
18
20

Se
ns

or
s 
re
al
 p
os
iti
on

Good position Bad position

(a)

2 4 6 8 10 12 14 16 18 20
Anchor degree (∆)

0
2
4
6
8

10
12
14
16
18
20

Se
ns

or
s 
re
al
 p
os

iti
on

Good position Bad position

(b)

Fig. 2: Node ordering in a LWSN. The y-axis corresponds
to the real sensor positions and a black point means that
the estimated rank of the sensor is correct, while an unfilled
triangle point means a wrong estimated rank. (a) Impact of
the position of the second anchor (∆ = 4) (b) Impact of node
degree (node s20 is configured as the second anchor)

In Figure 2b, to investigate the impact of node degree, we
vary ∆ from 2 (R = 10 m) to 20 (R = 100 m) nodes, as
indicated by the x-axis. In this configuration, s0 and s20 are the
two anchors. When ∆ is less than 10 nodes, any two sensors
have a different one-hop neighborhood, and the centroid-based
approach gives perfect ranking results. By increasing ∆ (i.e
the communication range), sensors at the network center start
having all the other nodes in their neighborhood. When ∆ =
20, the network becomes a clique and all the nodes have the
same neighborhood. In such a situation, these nodes will have
the same coordinates, and then the same rank. These nodes
are the ones with a wrong estimated rank in Figure 2b.

The results presented in this section show that, considering
an UDG connectivity model and a network of size N ≥ 2∆+1,
regardless the node sk designated as the second anchor, the
estimated ranks of sensors s1, s2, . . . , sk−1 are correct. In the
next section, we describe a solution in which the nodes in the
entire network can be iteratively ranked, without the precise
knowledge of a second anchor. However, the results also
indicate that the proposed solution only functions in networks
with a diameter of at least 3 hops. Nevertheless, we argue that
LWSN generally respect this constraint in practice, and we
evaluate the performance of the proposed algorithm in realistic
scenarios in Section VI.

V. ITERATIVE NODE RANKING ALGORITHM

In our quest of reducing the number of manually configured
parameters in the network, we notice that, even when the
second anchor is not perfectly chosen, a part of the nodes are
still correctly ranked. Based on this observation, we propose,
in this section, an iterative algorithm for node ranking in a
LWSN. This algorithm runs in two steps: in the first step,
each node discovers its neighborhood, while the second step,
executed only by some well-selected nodes, finds the ranks of
all the nodes in the network.

A. Neighborhood discovery

In this first step of our solution, nodes discover their one
and two-hop neighbors. Simple hello messages can be broad-
cast for one-hop neighbor discovery. For two-hop neighbors
discovery, nodes exchange their list of one-hop neighbors.



S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

S0 S1 S2 S3 S4 S5 S6

S3 S4 S5 S6 S7 S8 S9

(a)

(b)

(c)

S3 S4 S5 S6 S7 S8 S9

(d)

S0 S1 S2

S0 S1 S2

Fig. 3: An example of a 10-nodes LWSN, ∆ = 3. (a) Node
deployment; (b) Local topology information at s0; (c) Local
topology information at s3; (d) Local topology information at
s6. Dotted lines are for two-hop neighbors and red rectangles
are for anchor nodes.

Considering a network of 10 nodes, uniformly deployed under
an UDG connectivity model with ∆ = 3, as shown in Figure
3a, each node in the network builds a local view of the network.
This local view is shown for s0, s3 and s6 in Figures 3b, 3c
and 3d, respectively.

Using this approach, each node in the network has a com-
plete view of the connectivity between its one-hop neighbors.
Concerning the two-hop neighbors, connectivity information is
only partially available: the identity of the two-hop neighbors
is known, as well as their relations with one-hop neighbors;
however, connectivity information between two-hop neighbors
is not known.

B. Node ranking

These local topologies, available at each node, are used
for node ranking. As shown in Section IV, the nodes between
two selected anchors are well ranked, as long as the distance
between the two anchors is sufficient. Therefore, we propose
to start with the first node, s0, and rank the nodes in its
one-hop neighborhood. The two anchors are then iteratively
modified, selecting at each step nodes placed farther away, until
coordinates are computed for the entire network. Practically, s0
chooses one of its two-hop neighbors as the second anchor, and
it uses Algorithm 1 to rank all the nodes it has information on.
Node s0 then selects a one-hop neighbor to repeat this process,
until reaching the end of the LWSN.

This iterative solution is detailed in Algorithm 2. This
algorithm is executed by some selected nodes in the network,
the sink s0 being the first one (Line 1). At each iteration, the
currently selected node si builds a topology containing its one
and two-hop neighbors (Line 4). Examples of such topologies
are presented in Figure 3. Node si then defines two nodes in
his local topology as anchors (Lines 5 - 12), and it applies the
centroid-based ranking algorithm on its local topology (Line
13). We note that, with the exception of the first iteration, node
si is not one of the two anchors used in Algorithm 1. Running
the algorithm on its local topology, si updates the ranks of its
one-hop neighbors (Line 14) and shares this information with
them (Line 15). Finally, after ranking all its one-hop neighbors,
si selects the one with the highest rank (i.e. the node situated

Algorithm 2 Iterative algorithm

Input: G = (S,L), s0
Output: Sensor ordering

1: si ← s0
2: stop← 0
3: while stop = 0 do

4: G
′

← Get-Local-Topology(G, si)
5: sf ← sj , a ranked node in G

′

with minimum rank
6: if There are unranked two-hop neighbors then
7: ss ← Select one as the second anchor
8: else
9: ss ← sj ∈ Γ(si) with minimum one-hop neighbors

10: stop← 1
11: end if
12: Define-Anchors(G

′

, sf , ss)

13: Run-Centroid(G
′

)
14: Compute-Nodes-Rank(Γ(si))
15: Transmits Γ(si)
16: si ← Node-With-Max-Coordinate(Γ(si))
17: end while

the farthest away) to execute the next iteration (Line 16). We
note that, in an iteration, node si essentially does processing,
sending only one message. This message allows the one-hop
neighbors of si to update their ranks, and to implicitly select
which node will execute the next iteration.

The only question that remains to be answered regarding
Algorithm 2 is the choice of the two anchors. At the beginning
of the iteration, nodes in the two-hop neighborhood of si
can be divided in two groups: a group R, containing nodes
with ranks that are already defined (although not necessarily
correct), and a second group U , for nodes with undefined
ranks. For the first anchor, si uses the node in R with the
minimum rank, which allows updating the coordinates of all
the one-hop neighbors of si. At the beginning of the ranking
algorithm, R is empty. In this situation, s0 is setup as the
first anchor. Regarding the second anchor, this node needs to
be placed as far as possible from the first one. Therefore, a
two-hop neighbor in U is defined as the second anchor and,
in Section VI-B, we propose a metric to guide this choice
in order to obtain the best performance. Of course, when the
ranking computation approaches the network edge, the choice
of a two-hop neighbor might not be possible, and the set U
might even be empty. In this situation, si selects, among its
one-hop neighbors, the one with the minimum neighborhood
size, which is the most likely to be the last node in the network.

Regarding the communication complexity of the proposed
solution, we can assume that the communication cost for
neighborhood discovery is constant. The overall communica-
tion cost for the node ranking part depends on the number of
iterations of Algorithm 2, which depends on some network
properties like the network diameter or the average node
degree. These network properties depend, in turn, on the
deployment scenario and environment.

VI. PERFORMANCE EVALUATION

So far, we have considered an UDG model, i.e. a network
with stable, symmetric and uniform links. However, it is well



known that, in a real WSN deployment, the communication
area of a node is never a perfect disk. Our goal in this section
is to evaluate the performance of the proposed algorithm under
more realistic network conditions.

A. Evaluation methodology

We consider networks with asymmetric links, i.e, between
nodes si and sj , we have two independent links si → sj
and sj → si. Nodes are linearly and uniformly deployed in
an LWSN, with an inter-node distance of 5 m. We define a
missing link as a link that exists in an UDG scenario, but
not in the studied network. To take into account the dynamic
nature of links in a WSN, we evaluate the performance of our
algorithm when a given number of links are missing. However,
to ensure connectivity, we assume that the node deployment
guarantees a stable and symmetric link between two consecu-
tive nodes si and si+1. Such a condition can be satisfied during
network deployment, by selecting the appropriate hardware
or by adapting certain parameters (i.e. transmission power)
to the environment. Considering a given network size and
a given missing link probability (the same for all the links,
except direct physical neighbor, which are always connected),
we simulate 2000 different topologies. For each topology, we
apply our iterative algorithm, and finally we calculate the ratio
of correctly ranked pairs of nodes, as described in Section II.

B. Preliminary observations

The fact the we allow missing links creates new challenges
compared with the theoretical UDG scenario. If we consider
a simple network with 13 nodes and ∆ = 6, in the UDG
case the one-hop neighborhood of sink node s0 would be
formed by nodes s1 − s6. However, this is no longer the case
when missing links are allowed. Figure 4 shows, for this toy
scenario, the farthest one-hop neighbor of the sink as a function
of the missing link probability. This figure shows that, when
dynamic conditions are considered, the node coverage area,
and implicitly the neighborhood size, are not static as assumed
in the UDG model. One direct consequence is that, when the
missing link probability increases, the number of iterations
required by our node ranking algorithm increases, as less nodes
are ranked in each iteration.

1 2 3 4 5 6
Farthest Neighbor

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

UDG Model
Miss. Links = 30%

Miss. Links = 50%
Miss. Links = 70%

Fig. 4: The coverage area of the sink, presented as the farthest
one-hop neighbor, for different missing link probability

10 30 50 70
Missing Links (%)

0.0

0.2

0.4

0.6

0.8

1.0

No
de

s 
pa

ir 
ra
nk

in
g 
ra
tio

Connectivity = 1
Connectivity = 2
Connectivity = 3

Connectivity = 4
Connectivity = 5
Connectivity = 6

Fig. 5: Correct ranking ratio in the one-hop neighborhood of
node s0, depending on the choice of the second anchor. Results
are shown with 95% confidence intervals.

Another consequence of asymmetric and dynamic links
can be noticed in the selection of the second anchor for each
iteration, as described in Section V-B. As explained, node si
executing an iteration of the node ranking algorithm should
ideally select as a second anchor the most distant unranked
two-hop neighbor. However, no information concerning the
distance between nodes is available. Moreover, in realistic
settings, with asymmetric links, even the definition of the two-
hop neighborhood needs to be clarified, as one node might hear
another, but not the other way around. Therefore, we design a
metric to guide the choice of the second anchor among the two-
hop neighbors: C(si, sj), the connectivity of nodes sj related
to si, defined as the number of nodes receiving messages from
sj and, at the same time, able to send messages to si. Formally:

C(si, sj) = |{sk ∈ Γ(si)\sj ∈ Γ(sk)}| (2)

Figure 5 presents the ratio of correctly ranked pairs of
nodes in the one-hop neighborhood of sink node s0, depending
on the choice of the second anchor in terms of connectivity.
This practically corresponds to the first iteration of the node
ranking algorithm. The results show that the two-hop neighbor
with the lowest connectivity gives the best ranking ratio.
We use this insight in the following, to evaluate the overall
performance of the iterative ranking algorithm.

C. Algorithm performance

To evaluate the ranking algorithm, we consider a network
of 21 nodes, and we vary ∆ from 3 to 6. Figure 6 presents
the performance of our iterative algorithm as a function of
the percentage of missing links and ∆. We note that, since
we assume there is always a symmetric link between two
physically consecutive nodes, these links are not considered
among the possible missing links. This means that, deleting
all the other links in the network (i.e. 100% missing links)
results in a backbone topology, in which each node has exactly
two neighbors: its successor and predecessor in the physical
deployment. That is why in such a situation, 100% of pairs of
nodes are well ordered, regardless the value of ∆.



0 10 20 30 40 50 60 70 80 90 100
Missing links (%)

0.50

0.60

0.70

0.80

0.90

1.00
No

de
s 
pa

ir 
ra
nk

in
g 
ra
tio

∆ = 3
∆ = 4
∆ = 5
∆ = 6

Fig. 6: Ratio of the correctly ranked pairs of nodes as a
function of the percentage of missing links, for different values
of ∆.

This figure also highlights the good performance of the
proposed algorithm: a correct ranking ratio of more than 0.95
is obtained for ∆ = 3. We observe that, as the one-hop neigh-
borhood size increases (i.e. higher ∆), the ranking performance
decreases. However, in practice, a node with many one-hop
neighbors can prune some of them and use in the ranking
algorithm only high quality links. The trade-off of reducing the
neighborhood size is an increase in the number of iterations
required by the ranking algorithm, as it can be noticed in
Figure 7. A direct consequence is therefore the increase of
the overall energy cost required by the ranking algorithm; we
note however that this algorithm is only executed after node
deployment or re-deployment. Thus, we argue that it is worth
paying the cost induced by link pruning in order to guarantee
a good ranking performance.

0 10 20 30 40 50 60 70 80 90 100
Missing links (%)

4
5
7
8
10
12
13
15
17
18

#
IT
ER

AT
IO
NS

∆ = 3
∆ = 4
∆ = 5
∆ = 6

Fig. 7: Total number of iterations as a function of the percent-
age of missing links, for different values of ∆.

VII. CONCLUSION

In this paper, we proposed an iterative and distributed
centroid-based algorithm for node ranking in a WSN with
linear topology. Our algorithm takes as input local information

regarding node connectivity and the single manually config-
ured parameter is the first sensor of the network. The proposed
algorithm iteratively selects virtual anchors and correctly ranks
more and more nodes in the network. At each iteration, all
the processing done by the selected node depends on its
neighborhood size and not on the number of nodes in the
entire network. Thus, our solution is scalable and lightweight
considering the network deployment and maintenance. Exten-
sive simulations considering networks with various degrees
of connectivity showed the robustness of the approach, as
well as demonstrating the high quality of the obtained output
sequences. Indeed, even in networks with low connectivity,
our solution can produce a sequence with more than 95% of
correctly ranked pairs of nodes. The next step of our work is
to evaluate the performance of the proposed algorithm in a real
deployment.

REFERENCES

[1] I. Jawhar, N. Mohamed, D.P. Agrawal, “Linear Wireless Sensor
Networks: Classification and Applications”, Journal of Network and

Computer Applications, 34(5):1671–1682, Sep. 2011.

[2] F. Stajano, N. Hoult, I. Wassell, P. Bennett, C. Middleton, K. Soga,
“Smart Bridges, Smart Tunnels: Transforming Wireless Sensor Networks
from Research Prototypes into Robust Engineering Infrastructure”, Ad

Hoc Networks, 8(8):872–888, Nov. 2010.

[3] W. Fisher, T. Camp, V. Krzhizhanovskaya, “Crack Detection in Earth
Dam and Levee Passive Seismic Data Using Support Vector Machines”,
Proc. ICCS 2016, San Diego, CA, USA, Jun. 2016.

[4] R. Domga Komguem, R. Stanica, M. Tchuente, F. Valois, “WARIM:
Wireless Sensor Networks Architecture for a Reliable Intersection Mon-
itoring”, Proc. IEEE ITSC 2014, Quingdao, China, Oct. 2014.

[5] Z. Sun, P. Wang, M. Vuran, M. Al-Rodhaan, A. Al-Dhelaan, I. Aky-
ildiz, “BorderSense: Border Patrol through Advances Wireless Sensor
Networks”, Ad Hoc Networks, 9(3):468–477, May 2011.

[6] A. Boukerche, H. Oliveira, E. Nakamura, A. Loureiro, “Localization
Systems for Wireless Sensor Networks”, IEEE Wireless Communications,
14(6):6–12, Dec. 2007.

[7] G. von Zengen, Y. Schroder, S. Rottmann, F. Busching and L.C. Wolf,
“No-Cost Distance Estimation using Standard WSN Radios”, Proc. IEEE

Infocom 2016, San Francisco, CA, Apr. 2016.

[8] S. Zhang, X. Liu, J. Wang, J. Cao, G. Min, “Accurate Range-Free Lo-
calization for Anisotropic Wireless Sensor Networks”, ACM Transaction

on Sensor Networks, 11(3):51, May 2015.

[9] S. Merkel, S. Mostaghim, H. Schmeck, “Distributed Geometric Distance
Estimation in Ad Hoc Networks”, Proc. Adhoc-Now 2012, Belgrade,
Serbia, Jul. 2012.

[10] X. Zhu, G. Chen, “Spatial Ordering Derivation for One-Dimensional
Wireless Sensor Networks”, Proc. IEEE ISPA 2011, Busan, Korea, May
2011.

[11] X. Zhu, X. Wu, G. Chen, “Relative Localization for Wireless Sen-
sor Networks with Linear Topology”, Computer Communications,
36(1516):1581–1591, Sep. 2013.

[12] Y. Cui, Q. Wang, H. Yuan, X. Song, X. Hu, L. Zhao, “Relative
Localization in Wireless Sensor Networks for Measurement of Electric
Fields under HVDC Transmission Lines”, Sensors, 15(2):3540–3564,
Feb. 2015.

[13] M.O. Ergin, V. Handziski, A. Behboodi, A. Wolisz, “Determining Node
Sequence in a Linear Configuration”, Proc. IPIN 2014, Busan, Korea,
Oct. 2014.

[14] Z. Lotker, M.M. de Albeniz, S. Pérénnes, “Range-Free Ranking in
Sensors Networks and Its Applications to Localization”, Proc. Adhoc-

Now 2004, Vancouver, BC, Canada, Jul. 2004.

[15] T. Watteyne, I. Augé-Blum, M. Dohler, S. Ubéda, D. Barthel, “Centroid
Virtual Coordinates: A Novel Near-Shortest Path Routing Paradigm”,
Computer Networks, 53(10):1697–1711, Jul. 2009.


