N

N

Adaptive Total Bandwidth Server: Using Predictive
Execution Time
Kiyofumi Tanaka

» To cite this version:

Kiyofumi Tanaka. Adaptive Total Bandwidth Server: Using Predictive Execution Time. 4th In-
ternational Embedded Systems Symposium (IESS), Jun 2013, Paderborn, Germany. pp.250-261,
10.1007/978-3-642-38853-8_23 . hal-01466681

HAL Id: hal-01466681
https://inria.hal.science/hal-01466681
Submitted on 13 Feb 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01466681
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Adaptive Total Bandwidth Server:
Using Predictive Execution Time

Kiyofumi Tanaka

School of Information Science, Japan Advanced Institute of Science and Technology,
Asahidai 1-1, Nomi-city, Ishikawa, 923-1292 Japan
kiyofumi@jaist.ac.jp

Abstract. Along with the growing diversity and complexity of real-time
embedded systems, it is becoming common that different types of tasks,
periodic tasks and aperiodic tasks, reside in a system. In such systems, it
is important that schedulability of periodic tasks is maintained and at the
same time response times to aperiodic requests are short enough. Total
Bandwidth Server (TBS) is one of convincing task scheduling algorithms
for mixed task sets of periodic and aperiodic tasks. This paper proposes
a method of using predictive execution times instead of worst-case exe-
cution times for deadline calculations in TBS to obtain shorter deadlines
and reducing response times of aperiodic execution, while maintaining
the schedulability of periodic tasks. From the evaluation by simulation,
the proposed method combined with a resource reclaiming technique ex-
hibits better average response times for aperiodic tasks, in case of a heavy
load, by up to 39%.

Keywords: Real-time task scheduling, worst-case execution time, pre-
dictive execution time, total bandwidth server

1 Introduction

Along with the growing diversity and complexity of embedded systems, it is
becoming common that different types of tasks reside in a system. For exam-
ple, control tasks that are required to completely meet real-time requirements
(hard tasks) and user interface tasks that should give a certain level of response
times but are not required to completely behave at real-time (soft tasks) would
be mixed. To achieve real-time processing required in such a system, real-time
scheduling algorithms that involve both hard and soft tasks and guarantee the
schedulability of tasks (especially of hard tasks) must be used.

Hard tasks should be periodically invoked and be considered to spend their
worst-case execution time (WCET), since the schedulability, that they satisfy
their deadline requirements, must be confirmed in advance of system operation.
On the other hand, soft tasks can run on aperiodic invocations because of inex-
act real-time requirements. There is a scheduling algorithm for such hard and
soft tasks, Total Bandwidth Server (TBS) [1]. TBS has a merit that CPU uti-
lization can be up to 100% while maintaining schedulability. This study explores
algorithms based on TBS.

2 Kiyofumi Tanaka

Complexity of current processors and programs makes estimation of WCET
difficult. For example, deep pipelining execution of machine instructions makes
estimation of their execution times hard, or in a system with many tasks, whether
each memory reference would hit in the cache memory or not is difficult to
decide/predict [2]. In addition, the worst-case execution path in a program is
almost impossible to trace since it includes many branches and loop structures,
and all input patterns give a vast search range [3]. Consequently, WCET is
obliged to be pessimistically estimated and leads to having a large gap with
actual execution times. Due to this gap, it is difficult to obtain the best schedules
by scheduling algorithms that use tasks’ execution times.

In this research, it is taken into consideration that soft tasks are not required
to completely satisfy the deadline constraints, and, instead of WCET, predictive
execution time (PET) is introduced in the TBS-based scheduling algorithm,
which aims to shorten response times of soft tasks.

2 Related Works

There are various scheduling algorithms proposed for task sets consisting of
both periodic and aperiodic tasks. They are categorized to fixed-priority servers
and dynamic-priority servers. Fixed-priority servers are based on rate monotonic
(RM) scheduling [4], which has a merit that higher-priority tasks have lower jit-
ters. As representative examples, Deferrable Server [5], Priority Exchange [5],
Sporadic Server [6], and Slack Stealing [7] were proposed. On the other hand,
dynamic-priority servers are based on earliest deadline first (EDF) scheduling
[4], which provides a strong merit that CPU utilization can reach up to 100%
while maintaining schedulability. Dynamic Priority Exchange [1], Dynamic Spo-
radic server [1], Total Bandwidth Server [1], Earliest Deadline Late Server [1],
and Constant Bandwidth Server [8] are examples of dynamic-priority servers.
The aim of these algorithms is to make response times of aperiodic requests
shorter, while the effectiveness is obtained in exchange for their implementation
complexity.

Total Bandwidth Server (TBS) provides good response times while leaving its
implementation complexity moderate. It is assumed that hard tasks are invoked
periodically and have their deadlines equal to the end of the period, and that soft
tasks are invoked irregularly, but do not have their explicit deadline requirements
in advance. When a soft task is invoked, tentative deadline is calculated and given
to the task as:

dr, = maz(ry,dg—1) + Gk (1)

Us
where k means kth instance of aperiodic tasks, rj is the arrival time of the kth
instance, di—1 is the absolute deadline of the k — 1th (previous) instance, C}, is
WCET of the kth instance, and Uy is the CPU utilization factor by the server
which takes charge of execution of aperiodic tasks. The server is considered to
occupy the U utilization factor and, every time an aperiodic request arrives,

Adaptive Total Bandwidth Server: Using Predictive Execution Time 3

leads to give the instance the bandwidth of Us. The term, max(ry,dy_1), pre-
vents bandwidths of successive aperiodic instances from overlapping with each
other. After an instance of an aperiodic task is given its deadline, all periodic
and aperiodic tasks are scheduled by following EDF algorithm. By letting U, be
the CPU utilization factor by all hard periodic tasks, it was proved that a task
set, is schedulable if and only if U, + Uy, < 1 [1].

In TBS, overestimated WCET would make the deadline later than necessary
by the formula (1). This might delay the execution of the aperiodic instance
and cause long response time. The literature [10] showed the method, resource
reclaiming, where deadline is recalculated by using actually elapsed execution
time when the instance finishes, and the new deadline is used for the deadline
calculation for subsequent aperiodic instances. By this method, the subsequent
instances benefit from the earlier deadlines and their response times would be
improved.

In the resource reclaiming, kth aperiodic instance is given deadline dj, by:

_ C
e =Tk + 7’: (2)
71 1s the value calculated as:
T, = max(ry, di_1, fr—1) (3)

That is, the maximal value among the arrival time, the recalculated deadline of
the previous instance and the finishing time of the previous instance is selected
as the release time. When the k& — 1th aperiodic instance finishes, the deadline
is recalculated by the following formula that includes the actual execution time,
C}_1, of the instance, and is reflected in the formula (3), and then in the formula,
(2), for the subsequent task.

Cr1
Us

dp—1 =Tk-1+ (4)
There is another algorithm based on TBS. In the literature [11], Buttazzo,
et al. proposed a method for firm (not hard) periodic and soft aperiodic tasks.
Since firm deadline allows a task to be missed to some degree, the algorithm
achieves shorter response times by skipping periodic executions at times and
ensuring larger bandwidth for aperiodic tasks. This method aims to achieve
short response times at the sacrifice of completeness of periodic instances. On
the other hand, in this paper, a method of shortening response times of aperiodic
instances while maintaining schedulability of periodic tasks is proposed.

3 The Adaptive Total Bandwidth Algorithm

As is the case with the total bandwidth server algorithm presented in the liter-
ature [1], this paper assumes that task sets consist of periodic tasks with hard
deadlines and aperiodic tasks without explicit deadlines, where it is desirable

4 Kiyofumi Tanaka

that aperiodic execution finishes as early as possible. Since aperiodic tasks do
not have deadline, it is not necessary to use WCET from a schedulability point
of view. Although TBS dynamically gives tentative deadlines to aperiodic in-
stances, missing the deadlines is not serious or catastrophic. Therefore, use of
WCET for deadline calculation is not essential. Instead, shorter execution times
can be assumed and used for the deadline calculation while maintaining schedu-
lability of the whole task set. When the assumed execution times elapsed but the
execution did not finish yet, the deadline only has to be recalculated by using
longer execution times, for example, WCET. By this strategy, when aperiodic
execution finishes in the assumed time, the corresponding short deadline and
EDF algorithm can make the response time shorter.

3.1 Prediction of Execution Time (PET)

Generally, in real-time scheduling and its schedulability analysis, task execution
is considered to spend worst-case execution time (WCET). In practice, task
execution time is unknown beforehand and therefore WCET must be supposed
to spend, especially in hard real-time systems. However, in most cases, actual
execution time is shorter than WCET. Since WCET is pessimistically estimated,
the difference between the actual execution time and WCET tends to be large.

As the impact of the difference, for example, when SJF (Shortest Job First)
algorithm is applied based on WCETs, the average turnaround time would be
worse than that of the same algorithm based on actual execution times, although
this is an oracle with prior information. In Figure 1, (1) shows that WCETSs of
task A, task B and task C are 2, 3, and 4, respectively, and the execution order is
A, B, and then C based on SJF. When this order is applied to actual executions
where actual execution times are 2, 1, and 2 for task A, task B, and task C,
respectively, the average turnaround time becomes 3.33 (Figure 1 (2)). On the
other hand, if the actual execution times are known in advance and used in the
algorithm, the average turnaround time will be 3 under SJF as shown in Figure
1 (3). Like this, decision based on WCETS is not necessarily the best.

For task sets consisting of both hard and soft tasks, although WCET must
be assumed for execution of hard tasks, execution time shorter than WCET
can be assumed for soft tasks since they can miss their deadline to some de-

WCET =2 WCET =3 WCET =4
QD) ‘ A ‘ B ‘ (o]
2 1 2
@) ‘ A ‘ B ‘ c ‘ Scheduling based on WCET

Average turnaround time=(2 + 3 + 5) /3 = 3.33

1 2
@ | B A c Scheduling based on actual execution times
Average turnaround time= (1 + 3 + 5) /3 = 3.00

Fig. 1. Scheduling base on Shortest Job First.

Adaptive Total Bandwidth Server: Using Predictive Execution Time 5

gree. Especially in the total bandwidth server environments, deadlines are not
given to aperiodic tasks in advance. In run-time, (tentative) deadline is calcu-
lated using WCET and is assigned dynamically. If the deadline calculation for
aperiodic tasks uses execution time shorter than WCET, earlier deadline can be
obtained and therefore shorter response time can be expected. Assumption of
shorter execution time can cause deadline misses. However, the deadline misses
are not serious since the tasks are for soft real-time processing. After the misses,
remaining execution has only to continue.

In this strategy, execution times should be predicted. There are various pos-
sible ways to obtain the predictive execution times (PET).

1. Random choice of execution times
2. Measurement in advance
3. Prediction using a history of execution

The above 1 has high possibility of choosing shorter times than actual execution
times, and therefore would cause many deadline misses (although the misses are
not serious). The next one seems effective but has a defect of not following the
change of execution times when a task is executed many times in the system
operation. The third one predicts execution times by an execution history of
the same task and therefore can follow the fluctuation of execution times. The
prediction method is not the most important essence of the proposed adaptive
TBS. For the present, this paper uses the following prediction method which
corresponds to the above 3.

C’iPETk =axXx C’iPETk71 + (1 - Oé) x C’iETk717 CiPETO = CiWCET (5)

Here, Cippq, is PET for kth instance of an aperiodic task J;. Cip,, | is the
execution time actually spent for the previous execution of the same task .J;.
The initial value Cj, ., is equal to WCET of the task, Cy, .. This formula
calculates as the predictive execution time an weighted average of the previous
PET and the previous actual execution time with the weighting coefficient «.

3.2 Definition of the Adaptive TB Server

In the adaptive TBS, an instance of an aperiodic task is divided into two sub
instances. They are regarded as different instances, and then the original TBS
is naturally applied.

In the following descriptions, aperiodic tasks are not distinguished and they
are supposed to have global serial instance numbers, k, according to the request
order. Execution of Jy, kth instance of aperiodic tasks, is divided into two parts,
JpeT, and Jrest,- JPET, corresponds to the execution from the beginning of
Ji to the predicted finishing time. JrggT, corresponds to the execution from the
predicted finishing time. If the execution of Jj finishes at or before the predicted
time, JrrsT, does not exist. Let the worst case execution time of J;, be Cwerr,,
the predictive execution time of J; be Cpgr, , and the execution time of JrgsT,

6 Kiyofumi Tanaka

be Crest, = Cwcer, — CpeT, . When the kth aperiodic request arrives at the
time ¢t = ry, two instances for the request are assigned deadlines as:

c
dprr, = maz(ry,dg_1) + PUETk (6)
c
drest, = dpET) + %ST’“ (7)
s
Deadline assignment in the original TBS was as:
C
dy, = maz(rg,dg_1) + % (8)
s

From Crest, = Cwcer, — Cper, and the formula (6), (7), and (8),

Cper Cwcer, — CPET
drest), = max(r,dg_1) + - ko4 kU k
s s
- Cweoer,
- ma’w(rkadk)—l) + T = dk
S

Therefore, two deadlines can be calculated by the formula (6) and (8) at the
arrival time. The use of the formula (8) is more suitable than the formula (7)
since the second term in the right expression is calculated with two constants
and has only to be calculated once in advance of the system operation.

3.3 Example of Adaptive Total Bandwidth Server

In this section, an example of Adaptive TBS is shown. In Figure 2, (1) and (2)
show scheduling results of the original and adaptive TBS, respectively. There
are two periodic tasks, 7 and 7, and an aperiodic task request. The period of
71 is T1 = 4, and its execution time C; = 1. 7» has the period T = 6, and its
execution time Cy = 3. Therefore, the CPU utilization by the two periodic tasks
is Up = 0.25 4+ 0.5 = 0.75 and the CPU utilization by the aperiodic server is
Us =1 - U, = 0.25. The aperiodic request occurs at tick 3, and its WCET is
supposed to be 3, while the predictive execution time and the actual execution
time are 2. In the original TBS, the deadline of the aperiodic task is dwcpr =
3+ 3/0.25 = 15. Based on EDF algorithm, the aperiodic task starts execution
at tick 5, and is suspended at tick 6 by 75. Then, after the execution of 7y, the
execution resumes at tick 10 and finishes at tick 11. Consequently, the response
time becomes 11 — 3 = 8. On the other hand, in the adaptive TBS, the two
deadlines, dppr = 34+ 2/0.25 = 11 and drgsr = 11 + (3 — 2)/0.25 = 15, are
given. Based on EDF, the aperiodic task starts execution at tick 3 and finishes at
tick 7, which gives the response time of 7 — 3 = 4. In this example, the adaptive
TBS shortens the response time by 4 ticks compared with the original TBS.

Suppose that the same task set is scheduled except that the actual execution
time of the aperiodic task is 3 ticks. The adaptive TBS suspends the aperiodic
execution at tick 7, resumes the execution at tick 11, and then finishes it at tick
12. Like this, even if the execution time is incorrectly predicted, the response
time would be the same as or shorter than that in the original TBS.

Adaptive Total Bandwidth Server: Using Predictive Execution Time 7

Aperiodic | | T | |:| [I l [Us=1-Up=025

requests I T T I T I I T T T T T T T I T T

Up=025+05=075
| | | | | I | | |
1

I | I I I 1 I [I I
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
(1) Original TBS

h
1
Aperiodic | | | T | } } } } \l:/ | | | \I/ | | Us=1-Up=025

requests l I I [I I [

r, 1276 T ’—‘ T —‘ I ’—‘ Up=025+05=075
C2=3 | | | | | | i i |

1 I | I I I | | [| | | [| | |
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
(2) Adaptive TBS

Fig. 2. Example of original and adaptive TBS.

3.4 Adaptive Total Bandwidth Schedulability

After an aperiodic request is divided into two sub instances, the adaptive TBS
behaves just as the original TBS, where the two sub instances can be considered
to arrive at the same time. Obviously, from the formulas (6) and (7), the uti-
lization by the two instances between maz(ry,dr—1) and di is the same as that
in the original TBS as follows.

CRrEsT,

CpeT
k —_
drest, — dpPET,

= =U.
dpet, — max(ry, di—1) i

UJPETk = Us, UJR.EST,e
Therefore, schedulability of the adaptive TBS leads to be the same as that of
the original TBS presented in the literature [9].

3.5 Implementation Complexity

In the proposed algorithm, task execution is divided into two instances. However,
operating systems should manage a task with a single information set, task
control block. This is realized by re-setting up deadline and re-inserting the task
in a ready queue when PET elapses and the task has not finished, which is the
only difference from the original TBS. To find that execution reaches PET, the
scheduler should be executed every tick timing. This is achieved by calling the
scheduler when timer/tick interrupts occur, which is a natural procedure that
operating systems usually follow. In addition, as described in the section 3.2, the
value of the second term in the right side of the formula (8) should be statically
computed and used when necessary to reduce the recalculation overheads.

8 Kiyofumi Tanaka

3.6 Affinity with Resource Reclaiming

In the proposed adaptive TBS, when deadline is calculated for kth aperiodic
request, dx_; is needed. Since the previous (k — 1th) aperiodic request is divided
into two instances, the deadline for the second instance, that is drrst, ., is
used for the calculation. However, when the execution of the k — 1th request
finishes in its PET (Cpgr,_,), the second instance is not executed. In this case,
instead of drgst,_,, dpeT,_, can be used to calculate the deadline for the
kth task. This can be applied when the execution of the first instance of the
k — 1th aperiodic task finishes before the kth aperiodic task arrives. This is one
of resource reclaiming methods.

A greedier method, resource reclaiming technique [10] described in the section
2, can be easily applied to the proposed adaptive TBS. When the execution of an
aperiodic instance finishes, whether or not the execution is for the first or second
instance after the task is divided, the deadline is recalculated by the formula (4),
then the deadline is applied to the formula (3), and finally the following aperiodic
instances can be given earlier deadlines by the formula (2).

In this paper, the former is called “simple resource reclaiming” and the latter
“greedier resource reclaiming”. In the evaluation section, these two resource
reclaiming methods are combined with the proposed adaptive TBS.

4 Evaluation

4.1 Evaluation methodology

In this section, simulation results of the proposed TBS are shown. In the eval-
uation, six methods, Original TBS, the original TBS with resource reclaiming
described in the section 2 (Original TBS-95), the adaptive TBS without any
resource reclaiming (ATBS w/o RR), the adaptive TBS with simple resource
reclaiming described in the section 3.6 (ATBS w/ RR), the adaptive TBS with
greedier resource reclaiming (ATBS-95), and the ideal TBS where execution
times of instances are known (Oracle), are compared.

In the simulation, task sets consist of periodic tasks with the total CPU
utilization (U,) from 60% to 90% at intervals of 5% and aperiodic tasks with the
total utilization from 0.5% to 2% in the observation period (100,000 ticks). The
aperiodic server has the utilization U; = 1 —U),. For periodic tasks, their periods
are decided by exponential distributions where the average value is 100 ticks.
Their WCET and actual execution times are equal and obtained by exponential
distributions with the average of 10 ticks. For aperiodic tasks, a task set is
supposed to contain 1 to 4 different tasks. Each task in a set is invoked multiple
times and the arrival times are decided by Poisson distributions with 1.25 per
1,000 ticks on average. The WCETsSs are decided by exponential distributions with
the average of 8 ticks. Each task instance has its actual execution time decided
by exponential distributions with the average of 4 ticks, under the condition that
the upper bound is the corresponding WCET. For all aperiodic task sets, the
average ratio of actual execution times to WCET was about 0.33.

Adaptive Total Bandwidth Server: Using Predictive Execution Time 9

For each Up, all combinations of ten periodic task sets and ten aperiodic
task sets (total 100 task sets) are simulated and the average value is shown. For
the proposed methods, the weighting coefficient for PET calculation (« in the
section 3.1) is 0.5.

4.2 Results

Figure 3 is the results where each task set contains only one aperiodic task. The
utilization by the aperiodic task’s execution is about 0.5%. In the figure, the
horizontal axis indicates the CPU utilization by periodic tasks (Up), and the
vertical axis indicates the average response time of aperiodic task executions.
Under 65%, the response times are almost the same for all the six methods.
This is because the server utilization, Us = 1 — U, is large enough to quickly
serve the aperiodic requests. Over 70%, the differences gradually appear. When
Up is 90%, the response time of the original TBS is about 32 ticks, and that of
the original TBS-95 is 28.5 ticks. On the other hand, ATBS w/o RR, ATBS w/
RR, and ATBS-95 exhibit the response times of 20.5, 18, and 17.5 ticks, respec-
tively. In this evaluation, it is found that a method with deadline assignment,
based on PET (ATBS w/o RR) improves the response time by 36% compared
to the original WCET-based method, and that a method with greedier resource
reclaiming (ATBS-95) outperforms the original ATBS-95 by 39%. Consequently,
the PET-based method exhibits better ability when it is applied with resource
reclaiming,.

Figure 4 is the results where four aperiodic tasks are included in the task
sets. The utilization by the aperiodic tasks is about 2%. The trend is similar to
Figure 3 except that the improvement by resource reclaiming is larger. This is
because the higher aperiodic utilization leads to the situation where occurrences
of aperiodic requests overlap with each other and the resource reclaiming is
applied more frequently. The improvement of ATBS w/o RR to Original TBS
is 13%, while ATBS-95 achieves more improvement over the original TBS-95,
which is 22%.

The use of PET is discussed. The ratio of aperiodic executions that fin-
ished in PET was 56%. Table 1 is the average of the shortened deadline length
for aperiodic instances that finished in their PET in the simulation of Figure
4. (“Shortened length” means how shorter the deadline is than that based on
WCET.) The difference between ATBS w/o RR, ATBS w/ RR, and ATBS-95
does not exist, and therefore the table shows the ratio collectively. The larger
U, is, the longer the shortened length is. This is because larger U, corresponds
to smaller Us(= 1 — U,), therefore the 2nd term of the right expression in the
formula (1) would be larger and then the shortened length would be longer.
Consequently, ATBS methods using PET provide larger improvements when
the utilization by periodic tasks is high, in other words, when the capacity of
the aperiodic server is small.

Next, effects of resource reclaiming are discussed. Table 2 shows ratios of
resource reclaiming that actuallxy affected the deadline calculation of the suc-
ceeding tasks (that is, ratios of the cases that dj_; is the maximum in the

10

Kiyofumi Tanaka

Average Response Time (ticks)

35

30

25

N}
15

-
o

10

Original TBS

Original TBS-95
=A= ATBSw/o RR
== ATBS w/ RR

=¥= ATBS-95
—@— Oracle

60% 65% 70% 75% 80% 85% 90%

Fig. 3. Average response time (One aperiodic task).

Average Response Time (ticks)

50

45

40

w
@

w
o

N
a

N
o

i
o

10

Original TBS
Original TBS-95

=d= ATBSw/o RR
=== ATBSw/ RR
=¥= ATBS-95

=@= Oracle

60% 65% 70% 75% 80% 85% 90%

Fig. 4. Average response time (Four aperiodic tasks).

Adaptive Total Bandwidth Server: Using Predictive Execution Time 11

Table 1. Shortened deadline length (Four aperiodic tasks).

| Up (%) [60]65]70]75][80]85]90]
|Shortened length|[19.7]22.8[26.5]31.8]40.0]54.1[84.6]

formula (1) before resource reclaiming). In addition, it shows average shortened
deadline lengths in parentheses. From the table, when U, is larger, more and
longer resource reclaiming is performed. For ATBS, greedier resource reclaim-
ing (ATBS-95) provides more frequent and longer resource reclaiming than the
simple resource reclaiming (ATBS w/ RR).

Table 2. Affected resource reclaiming ratio (%) (Four aperiodic tasks).

Uy, (%) TBS-95 [ATBS w/ RR| ATBS-95 |

60 |13.7 (20.1)] 8.6 (18.1) |12.5 (19.7)
65 |16.0 (23.2) | 10.4 (20.8) |14.8 (22.8)
70 |18.8 (28.2) | 12.6 (25.3) |17.6 (27.7)
75 | 22.7 (36.8) | 15.7 (32.6) |21.4 (36.3)
80 | 288 (52.7) | 21.1 (44.5) |27.4 (51.6)
85 |38.3 (85.5) | 29.1 (68.9) |36.6 (83.3)
90 |57.9 (299.1)] 48.6 (252.9) |56.0 (297.4)

5 Conclusion

In this paper, for Total Bandwidth Server which is task scheduling algorithm
for task sets consisting of periodic tasks with hard deadlines and aperiodic tasks
without deadlines, the method that uses predictive execution times (PET) in-
stead of worst-case execution times for deadline calculation of aperiodic instances
is proposed. The use of PET is allowed since aperiodic tasks do not have explicit
deadlines. The aim of the method is to shorten response times of aperiodic tasks,
while the schedulability of periodic tasks is not influenced. The method can be
used with resource reclaiming techniques to further reduce response times.

From the evaluation by simulation, it was confirmed that the use of PET can
shorten response times of aperiodic executions and that resource reclaiming can
provide further improvements.

Currently, obtaining PET is simply based on the weighted average of the
previous execution time and the previous PET. Better calculation methods of
PET need to be explored. In addition, in this paper, an aperiodic task execution
is divided into two instances. There is a choice that it is divided into three or

12 Kiyofumi Tanaka

more instances and stepped deadlines are assigned to them. This choice is worth
evaluating.

The evaluation in this paper used task sets that were generated based on
probability distribution. To reflect actual situations where task execution times
fluctuate, evaluation with actual program codes is desired. In addition, in the
current evaluation, the greedier resource reclaiming exhibits better improvement
than the simple resource reclaiming. However, considering the calculation over-
heads of reclaiming, the effects might be degraded. In such cases, the practicality
of the simple resource reclaiming might emerge. In the future, evaluation with
actual program codes and scheduling overheads should be performed.

References

1. Spuri, M., Buttazzo, G. C.: Efficient Aperiodic Service under Earliest Deadline First
Scheduling. In: IEEE Real-Time Systems Symposium, pp.2-11, IEEE Computer
Society, San Juan (1994)

2. Lundqvist, T., Stenstrém, P.: Timing Anomalies in Dynamically Scheduled Micro-
processors. In: IEEE Real-Time Systems Symposium, pp.12-21, IEEE Computer
Society, Phoenix (1999)

3. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J., Stenstrom, P.: The Worst-Case Execution Time Prob-
lem — Overview of Methods and Survey of Tools. ACM Trans. on Embedded Com-
puting Systems, Vol.7, No.3, pp.1-53 (2008)

4. Liu, C. L., Layland, J. W.: Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment. Journal of the Association for Computing Machin-
ery, Vol.20, No.1, pp.46-61 (1973)

5. Lehoczky, J. P., Sha, L., Strosnider, J. K.: Enhanced Aperiodic Responsiveness in
Hard Real-Time Environments. In: IEEE Real-Time Systems Symposium, pp.261—
270, IEEE Computer Society, San Jose (1987)

6. Sprunt, B., Sha, L., Lehoczky, J.: Aperiodic Task Scheduling for Hard-Real-Time
Systems. Journal of Real-Time Systems, Vol.1, No.1, pp.27-60 (1989)

7. Lehoczky, J. P., Ramos-Thue, S.: An Optimal Algorithm for Scheduling Soft-
Aperiodic Tasks in Fixed-Priority Preemptive Systems. In: IEEE Real-Time Sys-
tems Symposium, pp.110-123, IEEE Computer Society, Vienna (1992)

8. Abeni, L., Buttazzo, G.: Integrating Multimedia Applications in Hard Real-Time
Systems. In: IEEE Real-Time Systems Symposium, pp.4-13, IEEE Computer Soci-
ety, Madrid (1998)

9. Spuri, M., Buttazzo, G.: Scheduling Aperiodic Tasks in Dynamic Priority Systems.
Journal of Real-Time Systems, Vol.10, No.2, pp.179-210 (1996)

10. Spuri, M., Buttazzo, G., Sensini, F.: Robust Aperiodic Scheduling under Dynamic
Priority Systems. In: IEEE Real-Time Systems Symposium, pp.210-219, IEEE
Computer Society, Pisa (1995)

11. Buttazzo, G. C., Caccamo, M.: Minimizing Aperiodic Response Times in a Firm
Real-Time Environment. IEEE Trans. on Software Engineering, Vol.25, No.1, pp.22—
32 (1999)

