GRACO: a geographic GReedy routing with an ACO-based void handling technique

Abstract : Geographic routing has gained much attention as a basic routing primitive in wireless sensor networks due to its memory-less, scalability, efficiency and low overhead features. Greedy forwarding is the simplest geographic routing scheme, it uses the distance as a forwarding criterion. Nevertheless, it may suffer from communication holes, where no next hop candidate is closer to the destination than the node currently holding the packet. For this purpose, a void handling technique is needed to recover from the void problem and successfully deliver data packets if a path does exist between source and destination nodes. Many approaches have been reported to solve this issue at the expense of extra processing and or overhead. This paper proposes GRACO, an efficient geographic routing protocol with a novel void recovery strategy based on ant colony optimization (ACO). GRACO is able to adaptively adjust the forwarding mechanism to avoid the blocking situation and effectively deliver data packets. Compared to GFG, one of the best performing geographic routing protocols, simulation results demonstrate that GRACO can successfully find shorter routing paths with higher delivery rate, less control packet overhead and shorter end-to-end delay.
Type de document :
Article dans une revue
International Journal of Sensor Networks, Inderscience, 2017
Liste complète des métadonnées

Littérature citée [44 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01467032
Contributeur : Nathalie Mitton <>
Soumis le : lundi 27 mars 2017 - 10:04:22
Dernière modification le : mardi 27 février 2018 - 11:54:25
Document(s) archivé(s) le : mercredi 28 juin 2017 - 12:45:26

Fichier

IJSNet_final - copie.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01467032, version 1

Collections

Citation

Mouna Rekik, Nathalie Mitton, Zied Chtourou. GRACO: a geographic GReedy routing with an ACO-based void handling technique. International Journal of Sensor Networks, Inderscience, 2017. 〈hal-01467032〉

Partager

Métriques

Consultations de la notice

391

Téléchargements de fichiers

198