S. R. Das and M. Y. Chen, Yahoo! for amazon: Sentiment extraction from small talk on the web, Management Science, vol.53, issue.9, pp.1375-1388, 2001.

R. M. Tong, An operational system for detecting and tracking opinions in on-line discussion, Working Notes of the ACM SIGIR 2001 Workshop on Operational Text Classification, vol.1, p.6, 2001.

K. Dave, S. Lawrence, and D. M. Pennock, Mining the peanut gallery: Opinion extraction and semantic classification of product reviews, Proceedings of the 12th international conference on World Wide Web, pp.519-528, 2003.

M. Hu and B. Liu, Mining opinion features in customer reviews, AAAI, vol.4, pp.755-760, 2004.

, Mining and summarizing customer reviews, Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pp.168-177, 2004.

A. Popescu and O. Etzioni, Extracting product features and opinions from reviews, Natural language processing and text mining, pp.9-28, 2007.

H. Shi, G. Zhou, and P. Qian, An attribute-based sentiment analysis system, Information Technology Journal, vol.9, issue.8, pp.1607-1614, 2010.

C. Akkaya, J. Wiebe, and R. Mihalcea, Subjectivity word sense disambiguation, Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, vol.1, pp.190-199, 2009.

T. Wilson, J. Wiebe, and P. Hoffmann, Recognizing contextual polarity in phrase-level sentiment analysis, Proceedings of the conference on human language technology and empirical methods in natural language processing, pp.347-354, 2005.

A. Khan, B. Baharudin, and K. Khan, Sentiment classification using sentence-level lexical based semantic orientation of online reviews, Trends in Applied Sciences Research, vol.6, pp.1141-1157, 2011.

S. Poria, A. Gelbukh, B. Agarwal, E. Cambria, and N. Howard, Sentic demo: A hybrid concept-level aspect-based sentiment analysis toolkit, 2014.

M. Hu and B. Liu, Mining and summarizing customer reviews, Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pp.168-177, 2004.

H. Zhang, Z. Yu, M. Xu, and Y. Shi, Feature-level sentiment analysis for chinese product reviews, Computer Research and Development (ICCRD), 2011 3rd International Conference on, vol.2, pp.135-140, 2011.

S. Kim and E. Hovy, Determining the sentiment of opinions, Proceedings of the 20th international conference on Computational Linguistics, p.1367, 2004.

H. Yu and V. Hatzivassiloglou, Towards answering opinion questions: Separating facts from opinions and identifying the polarity of opinion sentences, Proceedings of the 2003 conference on Empirical methods in natural language processing, pp.129-136, 2003.

G. Grefenstette, Y. Qu, J. G. Shanahan, and D. A. Evans, Coupling niche browsers and affect analysis for an opinion mining application, RIAO, pp.186-194, 2004.

J. C. De-albornoz, L. Plaza, and P. Gervás, Sentisense: An easily scalable concept-based affective lexicon for sentiment analysis, LREC, pp.3562-3567, 2012.

S. Baccianella, A. Esuli, and F. Sebastiani, Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining, LREC, vol.10, pp.2200-2204, 2010.

S. Cerini, V. Compagnoni, A. Demontis, M. Formentelli, and G. Gandini, Micro-wnop: A gold standard for the evaluation of automatically compiled lexical resources for opinion mining, pp.200-210, 2007.

C. Strapparava and A. Valitutti, Wordnet affect: an affective extension of wordnet, LREC, vol.4, pp.1083-1086, 2004.

H. T. Ng, Getting serious about word sense disambiguation, Proceedings of the ACL SIGLEX Workshop on Tagging Text with Lexical Semantics: Why, What, and How, pp.1-7, 1997.

B. Yang and C. Cardie, Context-aware learning for sentence-level sentiment analysis with posterior regularization, Proceedings of ACL, 2014.