
HAL Id: hal-01469514
https://inria.hal.science/hal-01469514

Submitted on 16 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Forest point processes for the automatic extraction of
networks in raster data

Alena Schmidt, Florent Lafarge, Claus Brenner, Franz Rottensteiner,
Christian Heipke

To cite this version:
Alena Schmidt, Florent Lafarge, Claus Brenner, Franz Rottensteiner, Christian Heipke. Forest point
processes for the automatic extraction of networks in raster data. ISPRS Journal of Photogrammetry
and Remote Sensing, 2017, 126, pp.38 - 55. �10.1016/j.isprsjprs.2017.01.012�. �hal-01469514�

https://inria.hal.science/hal-01469514
https://hal.archives-ouvertes.fr


Forest point processes for the automatic extraction of
networks in raster data

Alena Schmidta,, Florent Lafargeb, Claus Brennerc, Franz Rottensteinera,
Christian Heipkea

aInstitute of Photogrammetry and GeoInformation, Leibniz Universität Hannover,
Nienburger Str. 1, D-30167 Hannover, Germany

bTitane Research Group, INRIA, 2004 routes des Lucioles, 06902 Sophia Antipolis, France
cInstitute of Cartography and Geoinformatics, Leibniz Universität Hannover, Appelstr. 9a,

D-30167 Hannover, Germany

Abstract

In this paper, we propose a new stochastic approach for the automatic detection

of network structures in raster data. We represent a network as a set of trees

with acyclic planar graphs. We embed this model in the probabilistic frame-

work of spatial point processes and determine the most probable configuration

of trees by stochastic sampling. That is, different configurations are constructed

randomly by modifying the graph parameters and by adding or removing nodes

and edges to/ from the current trees. Each configuration is evaluated based on

the probabilities for these changes and an energy function describing the con-

formity with a predefined model. By using the Reversible jump Markov chain

Monte Carlo sampler, an approximation of the global optimum of the energy

function is iteratively reached. Although our main target application is the ex-

traction of rivers and tidal channels in digital terrain models, experiments with

other types of networks in images show the transferability to further applica-

tions. Qualitative and quantitative evaluations demonstrate the competitiveness

of our approach with respect to existing algorithms.
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1. Introduction

The automatic extraction of networks from images or lidar data is of great

interest in various disciplines. For instance, in remote sensing data, roads and

rivers represent networks. In medical data, neurons and vessels can be described

as network. Knowledge about the appearance of these objects helps to update5

road maps, to make predictions in case of flood events and to provide information

for automated diagnostic systems.

For the automatic extraction of objects, different techniques from the field

of image analysis are employed, frequently with the objective to integrate a-

priori knowledge into the model. The knowledge is often expressed in terms of10

probabilities and, thus, qualifies probabilistic strategies for object extraction.

In image analysis, a well-known approach is the use of Markov Random Fields

and Conditional Random Fields as introduced by [1] and [2]. Here, the image is

represented by a graph whose nodes correspond to the pixels or segments; the

edges indicate local context. Knowledge about the objects in the image may15

be integrated by favoring similar classes for pixels in a local neighborhood [3].

However, it is difficult to integrate more global constraints of the objects, e.g.

concerning their shape.

In contrast, probabilistic model-based approaches express knowledge about

the objects in a more holistic way. While this requires a careful modeling of20

the objects in order to stay general enough, it allows the integration of object

characteristics beyond pixel- or segment-based relations. In this context, the

method of spatial point processes has been shown to achieve good results in

various disciplines, e.g. for object detection in remote sensing using raster data

([4], [5], [6], [7], [8]), point clouds ([9], [10], [11]) or for the object detection in25

terrestrial images ([12], [13]).

Such spatial point processes benefit from (1) their flexibility in integrating

knowledge about the objects and their relation to other objects, (2) their vari-

ability of the number of objects which is not restricted in the sampling process,
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and (3) the determination of a global optimal object configuration.30

In this paper, we aim to take advantage of these benefits in order to detect

networks in raster data. The paper is structured as follows: First, state-of-the-

art approaches dealing with network detection are reviewed (Section 1.1). Then,

we describe the mathematical foundation of stochastic optimization with spatial

point processes using a Reversible jump Markov chain Monte Carlo sampler35

coupled with simulated annealing (Section 2). In Section 3, we present the

models employed for detecting networks of rivers and tidal channels in digital

terrain models (DTMs), but beyond the detection of different types of networks

in optical images. Our experimental setting and the results for different data

sets are described in Sections 4 and 5, respectively. Finally, conclusions and40

perspectives for future work are presented in Section 6.

1.1. Related work

Several methods have been developed for the automatic extraction of net-

works in raster data. In the following, we focus on methods for the detection

of (1) rivers and tidal channels - using 3D input data and integrating physical45

knowledge about the flow direction of water and (2) roads in remote sensing

and vessels in medicine - using 2D images and integrating knowledge about the

gray values and characteristics of the network.

River extraction. For some hydrological tasks, it is necessary to describe the

flow of the water in the whole scene, e.g. in order to enable flood predictions.50

This is typically done with flow routing algorithms using DTMs in the form of

raster data as input data, see [14] and [15]. Generally, these algorithms calculate

the flow of water in the scene which is related to the catchment area of each pixel

in the DTM. Considering that the movement is mainly driven by gravity and

neglecting other influences such as the property of the materials and surface55

roughness, the flow of the water is only allowed to neighboring pixels with a

lower height within these approaches. Two groups of flow routing algorithms

can be distinguished: (1) single flow methods (e.g. D8 [16], R8 [17], Kinematic
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Flow [18]) where the movement is restricted to one neighboring cell and (2)

multiple flow algorithms (e.g. TOPMODEL [19], FD8 [20], MFD [21]) where60

the flow of the water can be subdivided into multiple neighboring pixels with

a lower height. An advantage of these methods is the computational efficiency;

some of them are implemented in GIS software packages. However, they focus

on steep terrain and are not fully transferable to hydrological applications with

nearly horizontal terrain such as tidal channel networks as shown in [22].65

The characteristics of tidal channels - structures similar to rivers in Wadden

Sea areas - differ from those of normal rivers, because the flow direction changes

four times a day due to the tides. As a consequence, specific methods for the

automatic detection of these networks have been developed, mainly based on

image analysis. For instance, [23] consider the height and the curvature of70

the terrain in DTM at different scales and combine the results in a threshold-

based approach. The method detects most of the channels in the input data,

but fails for some of the small channels and does not generate a completely

connected network. In contrast, [24] develop an approach starting with low

level image processing operations such as edge detectors which are subsequently75

processed in order to find a channel network. For that purpose, parallel edges

corresponding to both channel borders are searched and median axes of the

channels are determined and linked based on their directions. The authors also

combine the approach with optical input data which, however, does not improve

the results [25].80

Network extraction with local strategies. A far larger number of network extrac-

tion approaches can be found in the field of road detection, see e.g. [26], and

the diagnosis of networks and trees in medical data such as neurons or blood

vessels, see [27] and [28]. Here, optical images or 3D image stacks are used as

input data.85

Some approaches solely consider local characteristics of the network such

as geometric and radiometric features in a local neighborhood. These methods

benefit from computational efficiency, but have the disadvantage that they are
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not robust against noise and fail in case of occlusions of the objects in the im-

ages. Among this group of approaches, some methods can be characterized as90

tracking approaches starting from some seed points and directions and expand-

ing the network by iteratively adding points and paths. This is done using a

Kalman filter strategy by [29] and [30] or by defining statistical tests concerning

the width, direction and curvature of roads [31]. In [32], segments are gradu-

ally added to the network by analyzing their shape and deriving the dominant95

directions of streets. For medical data tracking [33] and [34] analyze features

based on the Hessian matrix of the gray values in a local neighborhood or the

straightness of detected lines in the network. If many streets or vessels are close

to each other, a disadvantage of tracking approaches is that the network may

be expanded in an incorrect way.100

Many approaches define a set of rules for delineating road or vessel networks.

Their general strategy is to detect parts of the network starting from an image

segmentation ([35], [36], [37], [38]) or image classification ([39], [40], [41]) and

to group these parts based on prior knowledge. In general, the knowledge is

integrated in a heuristic way and requires the tuning of a large set of parameters105

for each scene.

Network extraction with global strategies. In contrast to local methods, global

approaches evaluate paths between seed points in the entire input data set and

optimize the network for the whole scene. Active parametric contour models

(snakes) [42] first initialize a contour representing the network. This contour is110

deformed by internal forces (describing knowledge about the smoothness of the

contour) and external forces (constraining the network to the data). For road

networks the internal and external forces are described by constraints about the

linearity and width of streets or about radiometric features in optical images

[43] or SAR data [44]. [45] also allow the initialized network to expand by115

adding pixels in a local neighborhood in the case of similar features of these

pixels. There are different possibilities to extend the parametrization of the

contours, for instance by considering the width of the roads with Ribbon snakes
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[46] or modeling the contour by a graph in network snakes [47] and, thus, benefit

from the direct consideration of the network topology. However, the modeling120

by snakes requires a good initialization of the network and, thus, makes these

methods more suitable to applications where an approximate contour is given

or extracted in a preprocessing step.

Another group of global methods is based on minimum cost paths. By using

graph structures, the topology is modeled explicitly. For road networks, one of125

the first approaches using minimum cost is the method of [48]. The results of

different line detectors are combined and a score function indicating the proba-

bility belonging to the network is evaluated. The A* algorithm is employed to

find the optimal path, i.e. the one having the highest scores (equivalent to the

minimum costs). The minimum cost path is also used by [49] and [50] in order130

to connect road segments from a pre-processing step or to find the best path in

classified image data [51]. By evaluating all pixels along the edges, the meth-

ods based on minimum cost path can successfully bypass single noise pixels in

the data. Moreover, these methods provide not only the geometry, but also the

topology of the network. However, in general, all seed pixels have to be added to135

the graph, which may result in topological errors. Another strategy of network

detection is to embed the problem in an image classification using graphical

models based on Markov Random Fields or Conditional Random Fields. [52]

and [53] first generate line segments by using different line detectors and topo-

logical filters. [54] or [55] calculate probabilities for each pixel or superpixel,140

respectively, for being part of the road network and, then, randomly choose

pairs of pixels with high probabilities and connect them by optimal paths. By

using higher order clique potentials global context is integrated. However, global

constraints of the objects, e.g. concerning their shape, are difficult to integrate

in such an approach.145

Network extraction by stochastic approaches. The network detection by spatial

point processes is used for road network detection for instance by [56]. The

authors introduce a model consisting of line segments having a certain width.
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Two line segments are considered to be connected if the smallest Euclidean dis-

tance between their endpoints is smaller than a predefined threshold. In the150

optimization process, the line segments are modified by changing their lengths

and widths. Moreover, line segments are added to or removed from the con-

figuration. For the evaluation of each object configuration, segments which are

not connected to other segments on both sides are penalized. They are also

penalized if they overlap, are too short, or enclose a small angle. The confor-155

mity of the object hypotheses with the input data is evaluated based on the

homogeneity of the pixel gray values inside the segments and the gray value

differences to the pixels outside the segment. [57] refine the method and avoid

constant penalization terms by evaluating the segment configuration depending

on the angle and the distance between two adjacent segments. An expansion of160

the model of [56] to 3D data is realized by [58] and [59], modeling the objects

by cylinders instead of line segments.

The methods based on marked point processes mentioned above have in

common that they require the definition of geometric constraints in order to

regard segments as connected, and, thus, enforce the connectivity of the net-165

work. Moreover, they do not directly provide the topology of the network.

In contrast, this is done in [5] by modeling the network as a planar graph.

In the sampling process, the nodes representing junction-points are iteratively

connected by edges, which correspond to line segments and may have different

widths. The edges are evaluated based on the homogeneity of the gray values170

inside the segments and the gradient magnitudes on the segment borders. The

authors penalize graph configurations with non-connected components, atypical

intersection angles and atypical numbers of outgoing edges (both compared to

training data). However, the applications are restricted to 2D image data, and

the method does not integrate physical knowledge. Moreover, the graph in the175

approach of [5] contains cycles which does not seem appropriate as object model

for our main target application: the extraction of river networks. In general,

river networks are structured as tree, where two or more streams converge and

form a bigger stream in the network.
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1.2. Contributions180

In this paper, we propose a new type of spatial point process for the de-

tection of line networks. Similarly to [5], our spatial point process is designed

to sample planar graphs. In our case, graphs are guaranteed to be acyclic so

that the sampled structure is a tree or a set of trees. We call this process a

forest point process. This specificity requires us to define adequate perturbation185

operators. Moreover, our model differs from the approach of [5] by the energy

function which is adapted for the detection of river networks in our model.

Here, we integrate physical knowledge about the network from 3D input data.

In comparison to our previous work ([60], [61]), we present an enhanced model

which is characterized by a reduced number of parameters, an extension of the190

energy model and an additional kernel. Our contribution is that (1) we develop

a new spatial point process for capturing tree structures in images, (2) we take

advantage of the 3D input data and, thus, facilitate the integration of physi-

cal knowledge about river networks, (3) we develop a hierarchical optimization

strategy and (4) we show the transferability to river networks in different types195

of terrain, but also to different networks in image data.

2. Theoretical background

2.1. Spatial point processes

Point processes belong to the group of stochastic processes, see [62] and

[63]. A point process is a sequence of random variables Xt that takes values in200

a state space X . In our application t represent the iteration in the sampling

process. In object extraction, point processes are used to find the most probable

configuration of objects in a scene given the data. A point is described by

its location vi = (xi, yi). In a marked point process, a set of marks mi, i.e.

a multidimensional random variable describing an object of a certain type at205

position vi, is added to each point. If we characterize an object li = (vi,mi) by

its location and mark, a marked point process can be thought of as a stochastic

8



model of configurations of an unknown number n of such objects in a bounded

region S (here: the DTM, thus the objects li exist in X = R2).

There are different types of point processes, each of them associated with a

measure which assigns a numerical value to each suitable subset B of S and,

thus, makes different realizations of point processes quantitatively comparable.

For the Poisson point process - one of the fundamental point processes - the

measure is given by the expected number of objects in each subset. The Poisson

point process assumes a complete randomness of the objects and models the

probability p(n) for the number of objects by a discrete Poisson distribution

p(n) =
λ(B)ne−λ(B)

n!
. (1)

In (1) the parameter λ - also called intensity parameter - corresponds to the210

expected value for the number of objects in the subset B. In practice, the as-

sumption of complete randomness of the object distribution is often not justified,

and more complex models are postulated instead. These models are described

by a probability density function g with respect to a reference point process,

which is usually defined as the Poisson point process.215

In our approach, g is expressed through a Gibbs energy U under the form

g ∝ exp − U . In this way, we integrate interactions between adjacent objects

by using Gibbs point processes, which are also applied e.g. in ([56], [64]). The

Gibbs energy can be modeled by the sum of a data energy Ud(X) and a prior

energy Up(X):

U(X) = βUd(X) + (1− β)Up(X) (2)

where X ∈ Ω is the object configuration from the set of all configurations Ω and

β ∈ [0, 1] describes the relative influence of both energy terms. The data energy

Ud(X) measures the consistency of the object configuration with the input data.

The energy Up(X) introduces prior knowledge about the object layout; our

models for these two energy terms are described in Section 3.3. The optimal220

configuration X̂ of objects can be determined by minimizing the Gibbs energy

U(X), i.e. X̂ = arg min
X∈Ω

U(X). This is typically done by coupling a Reversible
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jump Markov chain Monte Carlo (RJMCMC) sampler and a simulated annealing

relaxation.

2.2. Reversible jump Markov chain Monte Carlo Sampling225

Markov chain Monte Carlo (MCMC) methods belong to the group of sam-

pling approaches. The special feature of MCMC methods is that the samples

are not drawn independently, but each sample Xt is drawn on the basis of a

probability distribution that depends on the previous sample Xt−1. Thus, the

sequence of samples forms a Markov chain in the space of possible configura-

tions. If the number n of objects constituting the optimal configuration X̂ were

known and constant, it could be determined by MCMC sampling ([65], [66]).

RJMCMC is an extension of MCMC that can deal with an unknown number of

objects and changes of the dimension of the parameters between two sampling

steps [67]. The sampler proposes changes to the current configuration from a set

of pre-defined types of changes. Each of the change types is associated with a

density function Qi called proposition kernel. Each kernel Qi must be reversible,

i.e. the inverse change must be possible [68]. At each iteration t, a kernel Qi is

chosen randomly according to a proposition probability pQi which may depend

on the kernel type. The configuration X is changed according to the kernel Qi,

which results in a new configuration X ′. Subsequently, the Green ratio R ([67])

is calculated:

R =
π(X ′)

π(X)

pQr
i

pQi

Q(X,h|X ′, h′)
Q(X ′, h′|X,h)

∣∣∣∣det

(
∂fX→X′(X,h)

∂(X,h)

)∣∣∣∣ . (3)

In (4), pQi and pQr
i

are the probabilities for choosing kernel Qi and its inverse

kernel Qri , respectively. The kernel ratio Q(X,h|X′,h′)
Q(X′,h′|X,h) expresses the ratio of the

probabilities for the change of the configuration from X ′ to X and from X to

X ′. In this context, possible changes in the parameter dimension are taken into

account by introducing auxiliary dimension-matching variables h and h′ [67].

They depend on a transition function f which maps one configuration to another

one, (X ′, h′) = fX→X′(X,h). Its Jacobian determinant det
(
∂fX→X′ (X,h)

∂(X,h)

)
is

incorporated in equation 4. Both, f and h, have to be chosen depending on the
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application. π(X) is the target function that has to be optimized. By using the

Gibbs energy in our application, equation 3 becomes

R = exp

(
−U(X ′)− U(X)

Tt

)
pQr

i

pQi

Q(X,h|X ′, h′)
Q(X ′, h′|X,h)

∣∣∣∣det

(
∂fX→X′(X,h)

∂(X,h)

)∣∣∣∣ .
(4)

We also coupled the RJMCMC sampler with simulated annealing. For that rea-

son, the parameter Tt referred to as temperature ([69]) is introduced in equation

(4). The sequence of temperatures Tt tends to zero as t → ∞. Theoretically,

convergence to the global optimum is guaranteed for all initial configurations

X0 if Tt is reduced (cooled off) using a logarithmic scheme. In practice, a geo-230

metrical cooling scheme is generally introduced instead because it is faster and

usually still gives a good approximate solution ([70], [7]).

Following [65] and [66] the new configuration X ′ is accepted with an accep-

tance rate α and rejected with the probability 1−α, where α is computed from

R using

α = min(1, R). (5)

In practice, we sample a random number γ ∈ [0, 1]. If γ < α, the new configura-

tion is accepted and X ′ becomes the new configuration (Xt+1 = X ′). Otherwise

the old configuration is maintained (Xt+1 = X). The four steps of (1) choosing235

a proposition kernel Qi, (2) generating the new configuration X ′, (3) computing

the acceptance rate α, and (4) accepting or rejecting the new configuration are

repeated until a convergence criterion is achieved.

3. Extraction of line-networks

We use spatial point processes with RJMCMC sampling and simulated an-240

nealing as described in Section 2 to detect networks in raster data. First, we

define the object representation of the networks (Section 3.1). Second, the types

of change in the graph configuration which are applied during the sampling pro-

cess are introduced (Section 3.2). Third, the energy function to be minimized

during the global optimization is defined (Section 3.3).245
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3.1. Forest point process

Contrary to traditional marked point processes in which interactions be-

tween points are formulated in the energy through a neighboring relationship,

we specify the adjacency of points in the space of marks directly. Each point

of a configuration is thus associated to a set of point indices that gives the list250

of its neighboring points. This allows us to associate a unique adjacency graph

to each configuration of points where the nodes of the graph correspond to the

points and the edges correspond to pairs of neighboring points, as illustrated in

Figure 1. As our target application is the extraction of rivers, we restrict the

admissible topology to trees, i.e., undirected, acyclic graphs. Indeed we guar-255

antee that water flows only in one direction by avoiding cycles in the graph.

Simultaneously, we accept that we cannot detect two channels circling round an

island. Note that this particular case rarely occurs in our application. Since our

algorithm is applied to scenes which may contain multiple independent rivers,

the output is a collection of one or more disjoint trees, which is commonly known260

as a forest [71].

We define by forest point process a point process where each point is associ-

ated to a set of point indices so that the adjacency graph of any configuration of

points is a forest. In other words, we restrict the form of the adjacency graph to

undirected acyclic planar graphs to guarantee that any configuration of points265

can be represented as a set of trees.

In our approach, we enrich the space of marks so that each point is also

associated to a parameter specifying the width of corresponding edges. A point l

is thus defined by the set of variables l = (v, i1, ..., ik, w1, ..., wk) where v = (x, y)

refers to the position of the point, i1, ..., ik are the indices of its k adjacent points,270

and w1, ..., wk are the widths of the edges between the point and its adjacent

points. When k = 1, the point is an extremity node. When k > 1, the point is

a branch node that can be either associated to a change of direction (k = 2) or

to a confluence of branches (k > 2), as illustrated in Figure 2.

Note that, when a pair of points are adjacent, they have an identical edge275

width in their set of marks. We denote by e the edge forming by two adjacent
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Figure 1: Forest point processes. (left) A forest point process generates configurations of

points where each point li is associated with the index of its adjacent points (e.g. point index

2 and 5 for l3) and their branch width (e.g. 1 for branch (l2, l3), and 2 for (l4, l6)). (middle)

For any configuration, this formalism allows us to connect the points with a unique adjacency

graph which is planar and acyclic. (right) The output network is a set of trees represented by

connected line-segments, each line-segment having a specified width.

points in the adjacency graph.

3.2. Changes of the object configuration

In the sampling process, we modify the forest describing the network of

objects in the raster data. For that purpose, potential changes (also referred280

to as perturbations) that can be applied as well as the corresponding kernels

Qi must be defined. We allow three types of changes: (1) birth-and-death:

points are added to or removed from the current forest, (2) modification: the

parameters of the points are modified, (3) split-and-merge: two points are split

or merged which is done by merging the end nodes of two edges or by replacing285

their common end node by a new one for one of these edges while keeping

the end node for the other edge unchanged. As mentioned in Chapter 2, each

perturbation is required to be reversible, i.e. for each perturbation there has

to exist an inverse perturbation; for instance, the death event is the inverse

perturbation of the birth event. The corresponding kernel Qi indicates the290

probability for a specific change to a new configuration.
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(3)

(2)

(1)

Figure 2: Types of nodes. The nodes correspond to either (1) extremities in the tree,

(2) changes of direction, or (3) confluences of branches.

3.2.1. Birth-and-death

In the optimization, nodes and edges are added to or removed from the

current forest, which is accomplished by the birth-and-death kernel QBD.

In the case of a birth event, the position of the new node (xj , yj) is randomly

chosen based on a probability map which assigns the probability for being part

of the river network to each pixel in the DTM (see Section 3.4). Then, the node

is added to the graph. In our model, each node has to be connected with at least

one node in the forest. That is why we search for neighboring nodes in a local

neighborhood r. We check if the connection to them does not result in a cycle

in order to guarantee the acyclicity of the adjacency graph. Moreover, we check

if the edges do not cross in the object space. From all neighboring nodes which

fulfill these criteria, we randomly choose one and connect it to the new node

by an edge (see Figure 3 top). If no neighboring points exist, the position of a

second node (x(j+1), y(j+1)) is randomly chosen, again, based on the probability

map and the second node as well as an edge connecting both nodes and, thus,

a new tree are added to the forest (see Figure 3 bottom). Then, we randomly

choose a width for the new edge. Here, we assume a uniform distribution for all
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values in the range of the minimal and maximal width wmin and wmax which

are given for each scene. In total, one new edge and one or two new nodes are

added to the forest in the birth event. An example is illustrated in Figure 3. The

kernel ratio for this setting can be reduced to the ratio of the probabilities p(n)

for the number of nodes in the forest which is given by the Poisson distribution

in equation 1. In this way, the Gibbs point process is set in reference to the

Poisson point process. Then, the kernel ratio of the birth event is

QBD(X,h|X ′, h′)
QBD(X ′, h′|X,h)

=
p(n|n′)
p(n′|n)

=
λn

′
e−λ

n′!
· n!

λne−λ
=


λ
n′ , n′ = n+ 1

λ2

n′·(n′−1) , n′ = n+ 2.

(6)

In equation 6 parameters denoted with an apostrophe belong to the new con-

figuration, parameters without an apostrophe to the old configuration, i.e. n is

the number of nodes in the old configuration X and n′ is the number of nodes

in the new configuration X ′. λ is the expected value for the number of nodes

(see equation 1). The absolute value of the Jacobian determinant is 1 (see Ap-

pendix) and, thus, the Green ratio (equation 4) for the birth event for the case

n′ = n+ 1 is

R = exp

(
−U(X ′)− U(X)

Tt

)
pQD
pQB

λ

n′
(7)

where pQD and pQB are the probabilities for choosing the birth and the death295

kernel, respectively.

In the case of a death event, we randomly choose a node with only one

incident edge and remove it from the forest. We also delete its connection to

the forest and remove the incident edge. If the adjacent node is not connected

to a further node, we remove it, too. In total, one edge and one or two nodes300

are removed from the forest in the death event.

Analogously to the birth event, only the probability for the number of nodes

is required for the kernel ratio which is decremented by one or two in comparison
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to the old configuration. Thus, the kernel ratio for the death event is

QBD(X,h|X ′, h′)
QBD(X ′, h′|X,h)

=
λn

′
e−λ

n′!
· n!

λne−λ
=


n′

λ , n′ = n− 1

n′·(n′−1)
λ2 , n′ = n− 2.

(8)

Again, the Jacobian determinant is 1. Consequently, the Green ratio for the

death event is given by

R = exp

(
−U(X ′)− U(X)

Tt

)
pQB
pQD

n′

λ
(9)

for n′ = n− 1.
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Figure 3: The initial example forest consists of three edges {e1, e2, e3} and five nodes

{v1, v2, v3, v4, v5}. Top: In the birth event node v6 and edge e4 are added to the forest.

They are removed from the forest during the death event. Bottom: If neighboring nodes are

not found for the new node v6, a second node v7 and the edge e4 are added to the graph.

3.2.2. Modification

For the modification of the parameters of the forest, we distinguish between

three types of perturbation:305

(1) node translation

(2) edge width change
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(3) edge connectivity change

We assume that all modifications are equally probable and randomly choose

one of them. All types of modification are illustrated in Figure 4. For (1), we310

randomly generate a displacement vector within a local neighborhood. If the

shift to the new position does not result in crossing edges, we change the node

coordinates. For (2), we randomly change the width of an edge within a small

range around the old width. For (3), we randomly choose a node and change

its number of connections. This is done by adding or removing an edge to the315

forest. Both changes are equally probable, we randomly choose one of them. If

we add a connectivity, similar to the birth event, we search for nodes in a local

neighborhood r which can be connected to the chosen node without breaching

the acyclicity or planarity of the adjacency graph. From all nodes which fulfill

these criteria, we randomly choose one of them and add an edge connecting both320

nodes to the adjacency graph. If there does not exist a neighboring node, we do

not change the configuration. For the reduction of the number of connections,

we randomly choose a node and one of its incident edges. The edge is removed

from the forest, if all nodes are still connected by another edge to the forest.

For the modification of the parameters, the Green ratio 1 is

R = exp

(
−U(X ′)− U(X)

Tt

)
prQMo

pQMo
(10)

where prQMo and pQMo are the probabilities for choosing the modification kernel325

and its reversible kernel, respectively. Note, that all coordinates and width

changes in these events are set to be equally probable and, thus, the Kernel

ratio Q(X|X′)
Q(X′|X) is 1.

3.2.3. Split-and-merge

The third type of perturbation is a split-and-merge event where two nodes330

are split or merged.

1As the number of parameters does not change in this event, equation 10 is not a Green

ratio in the proper sense, but rather the transition probability of the Metropolis-Hasting

algorithm ([66]).
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Figure 4: In the modification event, the parameters of the forest are changed. Modification (1):

We change the coordinates of node v1 of edge e1. This is done by randomly generating a

transition vector ~b in a local neighborhood. The inverse modification is the shift of node

v1 in the opposite direction. Modification (2): We randomly change the width of edge e1.

Modification (3): The connectivity of node v5 is changed. Here, we add edge e4 to the

configuration and connect v5 and v3. In the inverse modification, the edge is removed from

the forest.

In the case of a merge event, a node is randomly chosen from the forest.

Then, nodes are searched in a local neighborhood. We check that merging two

nodes does not lead to cycles or crossing edges in the forest. If more than one

node fulfill these criteria, we randomly choose one of them. We set this node as

new node for the edge and remove the chosen node (Fig. 5). The determinant

of the Jacobian matrix for this setting is 1 and the kernel ratio is analogous to

the birth event given by the ratio of the Poisson measure (equation 6). Then,
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the Green ratio of the split event is

R = exp

(
−U(X ′)− U(X)

Tt

)
pQS
pQM

n′

λ
. (11)

Conversely, in the case of a split event, a node with at least two incident edges

is chosen randomly. Then, a local transition vector is randomly generated and

a node of one of the incident edges is moved to the new position. A new node

is added to the forest at this position. The Green ratio for this setting is

R = exp

(
−U(X ′)− U(X)

Tt

)
pQM
pQS

λ

n
(12)

where pQM and pQS are the probabilities for choosing the merge kernel and the

split kernel, respectively.
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Figure 5: In the merging event, a node is randomly chosen, here v5. It is merged with a node

in a predefined neighborhood r, here v3. Node v5 is removed from the graph. Conversely,

in the split event a node is randomly chosen, here v3, and a transition vector ~b is randomly

generated. A new node v5 is added to the configuration.

3.3. Energy model

For the evaluation of each configuration we model a Gibbs energy U (equa-335

tion 2) which is composed of a data energy Ud checking the consistency of the

object configuration with the input data and a prior energy Up where we intro-

duce prior knowledge about the configuration.

3.3.1. Data energy

The model of the data energy is motivated by our main target application:

the extraction of rivers and tidal channels in a DTM. These networks are char-

acterized by locally lower heights than their surroundings. A typical profile of a
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Figure 6: A typical example of profile of a tidal channel in our test site.

tidal channel is given in Figure 6. Consequently, rivers and tidal channels are as-

sumed to have high DTM gradient magnitudes on each bank and homogeneous

heights in between. We model the data energy by

Ud(Xt) = Ug(Xt) + Uh(Xt) (13)

where each term represents one of the two assumptions about rivers.340

High gradient magnitudes at the borders: We determine the data

energy from the DTM gradients at the edge borders by

Ug(Xt) =
∑
ej∈Xt

c1 − 2∑
mj=1

1

nmj

nj∑
kj=1

∇⊥DTMk

 . (14)

In (14), ∇⊥DTMk
=
〈
∇DTMk

,m⊥j,k

〉
is the component of the DTM gradient at

boundary pixel kj in direction of the normal vector of the lateral boundary

mj ∈ 1, 2 of the edge ej (see Fig. 7). The sum of the gradients is taken over

the nj pixels kj along that border; all gradients have equal weights. We only

take into account the two lateral borders m1,m2 of the segment, potentially345

corresponding to the river or channel banks. To ensure that the energy is only

minimized, if the data term is above a predefined value, we introduce a constant

c1.

Homogeneity of the heights: Perpendicular to the direction of the edge,
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Figure 7: For the calculation of the data term, we take into account the DTM gradients of

mj = 1 and mj = 2 and the homogeneity of the heights of mj = 3 and mj = 4 of each edge.

we analyze the DTM heights by

Uh(Xt) = ph ·
∑
ej∈Xt

max

0,−c2 +

4∑
mj=3

σz(mj)

 , (15)

where σz(mj) is the standard deviations of the heights along the perpendicular

borders mj ∈ 3, 4 of edge ej in the forest (see Fig. 7). ph is a weighting factor.350

We introduce a constant c2 in order to be less susceptible to noise in the data.

Since the data terms Ug and Ud are inconsistent with one another at the ends

of the borders mj ∈ 3, 4 where Ug forces the pixel to the pixels with the highest

gradients and Ud requires homogeneous heights of the pixels, we do not take into

account 5 % of the pixels on both ends of the borders mj ∈ 3, 4 and calculate355

Uh only for the 90 % of the pixels in the middle of the borders.

Note, that despite developed for river networks, the data energy is principally

transferable to any network in raster data that consists of homogeneous gray

values and has strong gradients at the borders. If the gray values of the network

are higher than the gray values of the background, we use the complementary360

image as input data.

3.3.2. Prior energy

Prior knowledge is integrated into the model in order to favor certain object

configurations independently of the input data. We model the prior energy by

three terms

Up(Xt) = Uo(Xt) + Us(Xt) + Uf (Xt) (16)
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where each term represents one of the characteristics of the network we intend

to take into account in our model.

Non-overlapping segments: We penalize an object configuration in which

the edges overlap. In this way, the accumulation of objects in regions with high

data energy can be avoided. For that purpose, we calculate the overlap area a

of all combinations of edges ei and ej and their relative overlap area a
a(ei)

and

a
a(ej) . The corresponding energy term is calculated by

Uo(Xt) = po
∑
i 6=j

max

(
a

a(ei)
,

a

a(ej)

)
, (17)

whereby we only consider the larger relative overlap area of two edges ei and ej365

and po is a penalizing factor.

Graph connectivity: We want to obtain a configuration with only one

tree and, thus, rate the connectivity of the nodes in the forest. For that purpose

we penalize graph configuration consisting of two or more trees by

Us(Xt) = ps · (nsg − 1) (18)

where nsg is the number of trees and ps is a penalizing factor.

Physical consistency of the network: For river networks, we take into

account the flow direction of water by analyzing the heights of the nodes and

edges of the forest. The general idea is to take into account that water does not

flow uphill. We integrate this physical knowledge using two criteria. First, each

node needs to be connected to exactly one node with a lower height value but

can have connections to an arbitrary number of nodes with a higher height value

- this means that we do not consider deltas or islands in our model. Second,

each pixel on the medial axis of an edge has to show the same trend in the

data, i.e. from a node to its adjacent node all height values have to increase or

decrease; otherwise the edge is penalized. Note that we allow small deviations

σ from this trend in order to be less susceptible to noise in the data. Thus, an

edge is not penalized if the height of each pixel follows the trend of the edge

within a tolerance of σ. Combining both criteria, the prior energy is modeled
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by

Uf (Xt) =
∑
ej∈Xt

pf ·
(
nf1 +

nf2(ej , σ)

l(ej)

)
. (19)

In (19), nf1 is the number of nodes in the forest violating the first criterion.

For each edge ej the number of pixels nf2(ej) violating the second criterion is

counted and normalized by the length l(ej) of the edge.370

Note that we do not use an explicit shape prior in our energy. However, as

illustrated in Fig. 1, tree branches are modeled by rectangles whose width and

length live in a bounded domain. This constitutes an indirect way to impose

some prior shape knowledge without adding an additional term in the energy

which would require more delicate parameter tunings: When a perturbation375

operator modifies, adds or removes a tree branch, the perturbation is not fully

random, but driven by some restriction w.r.t. the shape.

3.4. Hierarchical approach and probability map

We develop a strategy for a hierarchical extraction of networks. For that

purpose, we apply the method on the input data of the raster data with different380

resolution steps. We then search for the edges with the largest width in the

lowest resolution, keep the results, reduce the probability map for the detected

pixels and complete the network in the higher resolution by detecting edges with

lower widths. For river networks this means, that we first detect the biggest

streams in the network and then search for the smaller streams.385

The probability map indicates the probability to be a node to each pixel in

the raster data. We calculate the probability map based on the threshold for

simple raster data features, e.g. the heights in the DTM or the gray values in

the image. For river networks, we also convolve the DTM with derivatives of the

Gaussian and calculate the terrain curvatures based on the second derivative in390

the direction perpendicular to the gradients in the DTM. We apply a simple

threshold method and assign a probability of 1 to all pixels below / above this

threshold while the probability is set to 0.01 for the other pixels.
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4. Experimental setting

4.1. Experimental setup395

We tested our method on different data sets and for different applications.

First, the river and tidal channel network detection was evaluated. For that

purpose, we applied our method for three DTMs. Synthetic data simulating an

ideal tidal channel network were used in order to analyze the importance of each

term in the energy function (Section 5.1). We also evaluated the influence of400

the generation of random numbers in the sampling process with this data sets

(Section 5.2). The applicability to real data sets is shown based on two DTMs:

a test site from the Wadden Sea with nearly horizontal terrain and a mountain-

ous test site in Austria. On the one hand, we used this data for analyzing the

influence of different parameter settings and, especially, for evaluating the in-405

fluence of the integration of physical knowledge in the energy function (Section

5.3). On the other hand, we compared our results to those from a standard flow

routing algorithm (Section 5.4). Finally, the transferability to different types of

networks in images is shown (Section 5.5).

For the data sets of the Wadden Sea and Austria, we applied the hierarchical410

approach and searched for rivers in two resolution steps of the DTM. Moreover,

for all experiments we used a geometrical cooling scheme in the simulating an-

nealing process by reducing the temperature Tt = Tt0 · (df )t with a decreasing

factor df < 1. We also implemented a logarithmic cooling scheme, which theo-

retically guarantees to achieve the global optimum and test it for the synthetic415

data set. Note that we do not implement a stop criteria for the optimization,

but rather set the number of iterations sufficiently high.

4.2. Data sets

For the river detection, we tested our method using three DTMs. For some

experiments, we only use a smaller section of theses scenes as input data. The420

sizes and grid size of the data sets are given in Table 1. The synthetic data sim-

ulates an ideal tidal channel network and does not include any noise. Moreover,
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the heights in the channels continuously decrease from the source to the mouth.

The two real data sets are characterized by totally different terrain types. On

the one hand, we extracted a tidal channel network from the Wadden Sea. Here,425

the terrain is nearly horizontal with height differences of 10 m and 1.7 m in the

whole scene and the smaller section. In comparison to the synthetic data, the

borders of the channels are less clear and the transition to land is smoother,

especially for the small channels. On the other hand, we tested our approach on

a river network in Vorarlberg, Austria. Here, the terrain is mountainous with430

height differences of nearl 700 m and 250 m for the whole scene or the smaller

test site, respectively. For the synthetic data and the Wadden Sea data, we man-

ually labeled the borders of the channels in the DTM and generated a binary

mask of the network. Then, we used a contour-pruned skeleton approach [72]

as implemented in Matlab [73] resulting in one pixel wide lines and defined the435

skeleton as centerlines of the channels. At the head of the streams where stan-

dard skeleton algorithms fail we manually digitized the centerlines. For the third

data set orthoimages are available which helps to analyze the results. Moreover,

reference data of the rivers centerlines are given for this test site. They include

some piped river segments which we exclude from the quantitative evaluation.440

For the detection of different types of networks in images, we tested our

algorithm from the datasets of [9] that include images of river networks, leaf

and retina vessels as well as regular textures as roof tiles (Figures 17 and 18).

Apart from the roof tiles, all of these networks have a tree structure. The sizes

of the data sets are given in Table 1. Quantitative comparisons with further445

approaches in the literature are available for these images.

4.3. Parameter setting

In our experiments, we set the parameters to values that were determined

empirically based on our previous work [60]. Unless noted otherwise, they were

kept fixed for all tests. In all experiments, we set the initial temperature in450

equation (4) to Tt=0 = 10. The number of iterations was set to t = 1 · 106 and

t = 10 · 106 for the synthetic and the real data, respectively. For the whole
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Table 1: Data sets in our evaluation.

Data set (DTM) size of the scene [m2] grid size [m] ∆z[m]

Synthetic data 170 x 170 1 1.7

Wadden Sea 8000 x 3500 2, 5, 10, 20 10.0

Wadden Sea (section) 1001 x 1001 1, 2 1.7

Austria 10000 x 7500 5, 10 700

Austria (section) 2500 x 2500 5, 10 250

Data set (image) size of the scene

River 364 x 320

Leaf 651 x 364

Retina 365 x 378

Tiles 672 x 523

Austrian test site it was set to t = 40 · 106. The decreasing factor in the cooling

scheme was set to df = 0.99999998. The probabilities for choosing one of the

changes and the probabilites of the kernels were set to be equally probable for455

all kernels (thus, the corresponding ratios in equations 7, 9, 10, 11 and 12 cancel

to 1). The further parameters are listed in Table 2. In general, differences in the

parameter settings can be explained by the varying appearance of the channels

and rivers in the data sets and the size of the test sites.

4.4. Evaluation strategy460

For the evaluation of the results we choose two different methods: a line

evaluation for the river networks in the DTM and a pixel-wise comparison for

the results of the networks in the images.

The line evaluation is performed based on the method of [75] by evaluating

the edges (neglecting their width) in our graph with reference data of the channel

centerline. This is done, first, by defining a buffer surrounding the reference

centerline and the extracted edges in the graph, respectively, having a width of

bref and bext. Then, we tap points on the edges at regular intervals and searched
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Table 2: Parameter setting in the experiments. If the parameters vary with resolution of the

input data, several parameters are listed.

Parameter Synthetic

data

Wadden

Sea

Wadden Sea

(section)

Austria Austria

(section)

λ 50 500 500 4000 500

β 0.13 0.15 0.35 0.1, 0.04 0.1, 0.04

r[px] 16 20, 15 15 5, 6 5, 6

ph 5 3 3 20, 3 35, 3

po 300 200 300 500, 400 500

pc 100 80, 100 100 250, 150 100

pf 50 50 50 50 50

c1 50 150, 50, 20 50 0 0

c2 4 4 4 8 8

for corresponding points perpendicular to the centerline within the buffer. The

quality of the results is calculated by the completeness and correctness rate

which analyze if every object in the scene has been extracted and if the objects

are correct extracted, respectively. The combination of both rates is given by

the quality and can be used for a ranking of different results. The quality criteria

are calculated by

Completeness CP =
reference points within bext

sum of all points in the reference
, (20)

Correctness CR =
result points within bref

sum of all points in the result
, (21)

Quality Q =
CR · CP

CR+ CP − CR · CP
. (22)

In order to analyze the geometrical accuracy we calculate the Root Mean Square

Error RMS of the distances d between all result points within bref and the
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corresponding reference points by

RMSd =

√√√√ 1

np

np∑
i=1

d2
i , (23)

where np is the number of points in the result within bref .

For the images, ground truth data are available in the form of binary im-465

ages labeling all pixels within the network. For a pixel-wise comparison, we

evaluated all pixels within the segments of the edges (considering their width)

and calculate the completeness and correctness rate as well as the quality of the

results.

5. Results470

5.1. Quality

Figure 8 shows how the object configuration in the synthetic data set evolves

in the course of the sampling procedure, as edges are added to or removed

from the configuration or their parameters are changed. After about 760 · 103

iterations the tidal channel network is completely covered by segments. The475

contours of the channels correspond well to the borders of the edge segments

and the resultant graph is completely connected.

Figure 8: Results for the synthetic data set after 1 · 102, 1 · 104 and 1 · 106 iterations.

The quality parameters of the result in Figure 8 are given in Table 4. We

also compared the logarithmic and the geometrical cooling in the process for this
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data set. For the logarithmic cooling, the completeness and correctness rates480

slightly differ, CP = 98.8 %, CR = 94.0 % in comparison to the geometrical

cooling, CP = 99.6 %, CR = 88.6 %. The differences can be mainly explained

by the difference of the edges at the streams’ heads which are slightly beyond

the channels borders in the second case. The RMS of the results is 0.66 m and

0.69 m at a grid size of 1 m.485

We also analyzed the importance of each term in our model for the detection

of rivers and tidal channels. This is done by successively excluding one of the

terms. If we exclude the data term of the high gradient magnitudes at the

channel borders (pg = 0), we only detect some network parts (Fig. 9a). In

general, the borders of the edges do not correspond to the channel banks. If we490

do not take into account the homogeneity of the heights perpendicular to the

channels (ph = 0), the quality decreases by 5.2 %. By excluding the penalization

of overlapping areas (po = 0), nodes and edges accumulate near the medial

axes of the channels where segments with similar widths are sampled at nearly

the same positions (Fig. 9b). Thus, the graph does not represent the correct495

topology of the network. If we do not take into account the connectivity of the

graph (pc = 0), the sampling results in several trees which are not connected

(Fig. 9c). Due to the data term, the segments still coincide with the borders of

the channels rather well. However, we do not end up in a fully connected graph.

If we exclude the term verifying the consistency of the flow directions (pf = 0),500

the quality decreases by 6.2 %. In general, our results indicate that the chosen

model seems to be suitable to describe the extraction problem of river networks.

5.2. Reliability

In order to exclude the influence of the generation of random numbers on

the result, we repeated the geometrical cooling 100 times. Figure 10 shows505

the positions of the nodes in all 100 experiments. It can be seen that most of

the nodes lie on the centerline of the reference data. In general, the scattering

of the nodes positions is low. It is only high at the stream heads, which can

be explained by the data term that is near Ud = 0 on the nearly horizontal
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Figure 9: Results for the synthetic data set by excluding (left) the data term of the gradient

magnitudes at the channel borders (pg = 0), (middle) the penalization of the overlapping

(po = 0) and (right) the evaluation of the graph connectivity (pc = 0) where the blue circles

indicate the parts of the network which are not connected.

terrain and, thus, does not increase the energy function. Moreover, we observe510

that the smallest channel is less often detected than the bigger ones. Gradient

magnitudes at the borders are much lower than for the bigger channels and are

therefore less often accepted in the sampling process. In order to calculate a

precision of our result, we determine the standard deviation of all edge positions

perpendicular to the channels at regular distance of 1 m for all edges in the 100515

results. We only exclude the edge positions at the stream heads. In this way, we

obtain a precision of 0.38 m on average that can be attribute to the variability

of the random number generation.

We also analyze the energy curves in the experiments. Figure 11 shows

the mean energy of all 100 experiments. In general, the performance can be520

considered as stable. The standard deviation of the energy decreases with in-

creasing iteration. In the last iteration it is 2.6 % of the total energy which

can be explained by the smaller channels which are not detected in all results.

The number of nodes and edges varied by about 7 % in the final results of all

experiments (see Table 3).525

5.3. Applicability to different terrain types

We also evaluated our approach on real data: (1) a test site from the Wadden

Sea with nearly horizontal terrain and (2) a mountainous test site in Austria.
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Figure 10: Reference centerline of the tidal channel in the synthetic data set (red) and the

sampled node (green) for all 100 repetitions of the experiment.

Table 3: Variability of the results by repeating the experiment 100 times.

parameter mean standard deviation

number of nodes 37.6 2.6 (6.9 %)

number of edges 36.1 2.6 (7.2 %)

total energy U -4720.4 126.3 (2.6 %)

For both data sets we used the hierarchical approach in different resolution

steps and, first, detected the bigger streams in the data of lowest resolution530

and, then, searched for smaller streams in the higher resolution data. Note

that we kept most parameters constant in these steps. The evaluation results

for both scenes and two sections of them are given in Table 4. In general, the

quality criteria are high. In the Wadden Sea (section) data set the completeness

(CP), correctness (CR) and quality (Q) are CP = 72.7 %, CR = 94.4 % and535

Q = 69.7 %. All bigger channels are completely covered by line segments from

the graph (Fig. 12). However, the lower order channels are not completely

extracted. Here, the gradient magnitudes at the channels borders are much

smaller than for the bigger channels and often show a smooth transition to

land, so that the data term does not minimize the energy function in the same540

way. For most channels, the contours of the channels correspond well to the
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Figure 11: The energy is minimized during the sampling process and converges to the global

optimum. The figure shows the mean energy of 100 experiments whereby the error bars

represent the standard deviation in the respective iterations.

borders of the graph segments. The RMS of the position is 2.67 px at 1 m

pixel size. For the whole Wadden Sea scene, several tidal channels are found in

the different resolutions (Figure 13). However, some of the smaller channels are

not detected which leads to a relatively low completeness rate of CP = 50.6 %.545

The correctness rate is higher, CR = 78.2 %. By using a pixelwise evaluation

instead of the line evaluation described in Section 4.4 the completeness and

correctness rates increase to CP = 79.2 % and CR = 80.3 %.

For the data set of Austria the first order stream is completely detected in

the first hierarchical step as well. It is completely connected apart from one550

location where the riverbed is very wide and strongly curved (Fig. 14). We also

extract many rivers of higher order which are difficult to see in the orthoimages.

The accuracy results for this data set are CP = 76.1 %, CR = 76.1 % and

Q = 61.3 %. The RMS of the position is 0.95 px with 1 m pixel size in the

DTM. From the river network with a length of 247.3 km in the whole Austrian555

test site 156.1 km (CP = 64.5 %) are detected (Figure 15). The results show

some misclassifications with terrain structures similar to river networks, e.g.

valleys. Moreover, in the urban area on the left site of the scene some of the
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Figure 12: Sampling result for the Wadden Sea (section) area with the detected edges (red)

of the graph its segments of the first hierarchical step (green) and the second hierarchical step

(yellow). The blue line represents the reference centerline.

Figure 13: Results for the whole Wadden Sea scene. With increasing brightness of the blue

segments, the resolution of the input data increases.
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Figure 14: Segments of our approach of the first (yellow) and second hierarchical step (red) and

the reference network (blue) for the data set of Austria with an orthoimage in the background

(β = 0.04).

rivers are not detected.

For all scenes, we observe that the number of extracted rivers increases by560

increasing the weight β for the data term. Simultaneously, the correctness rate

is reduced. These results confirm our model: By integrating prior knowledge

about the network with a higher weight (lower value for β) the correctness rate

increases. In contrast, the completeness rate increases by increasing the weight

β and, thus, giving more weight to the data term.565

We also analyze the influence of the prior term of the flow direction Uf on the

results. By excluding this term, the quality of the results decreases by 0.5 % for

the Austrian test site and by 1.1 % for the Wadden Sea scene (see Table 5). The

correctness increases by 3.0 % and 1.7 %. The results show that the integration

of 3D knowledge – which differentiates our approach from other marked point570

process such as [5] – helps to improve the correctness of the detected network.
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Figure 15: Results (top) and reference (bottom) for the whole Austrian test site (β = 0.04).
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Table 4: Accuracy results (completeness CP, correctness CR, quality Q) by using buffer b for

our method (fpp) with varying parameter settings for all test sites.

Data set Method DTM

[m]

b

[m]

CP

[%]

CR

[%]

Q

[%]

RMS

[px]

synthetic

data

fpp (log) 1 3 98.8 94.0 92.9 0.66

fpp (geom) 99.6 89.0 88.6 0.69

Wadden Sea

(section)

fpp, β = 0.3 1, 2 10 70.1 96.1 68.9 2.75

fpp, β = 0.4 72.7 94.4 69.7 2.67

Wadden Sea fpp, β = 0.15 2, 5,

10, 20

50.6 78.2 44.3 0.34

Austria

(section)

fpp, β = 0.04 5, 10 15 76.1 76.1 61.3 0.95

fpp, β = 0.05 82.2 64.4 56.5 0.95

Austria fpp, β = 0.04 5, 10 61.4 68.4 47.9 1.04

fpp, β = 0.05 64.5 63.1 46.9 1.05

Table 5: Analysis of the input of the prior term Uf concerning the flow direction.

Data set Method CP [%] CR [%] Q [%] RMS [px]

Wadden Sea (section) with Uf 72.7 94.4 69.7 2.67

without Uf 70.3 92.7 66.6 2.56

Austria (section) with Uf 76.1 76.1 61.3 0.95

without Uf 78.4 73.1 60.8 0.97
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5.4. Comparison with standard flow routing algorithms

We also compared our method with a standard flow routing algorithm and

applied the Multiple Flow Direction approach as implemented in GRASS-GIS

(r.stream.extract, [76]). This method was also analyzed in detail for a region575

of the same Austrian data set by [77]. In general, flow routing algorithms are

computationally efficient; they calculate the flow of the water by exclusively an-

alyzing height differences of neighboring cells in the DTM. That is why the flow

routing algorithm outperforms the forest point process regarding the computing

time, with computing times of a few seconds in comparison to a few minutes of580

our approach for the test sites shown in Figure 12 and 14. The quantitative and

visual comparison for both test sites are given in Table 4 and Figure 16. We

selected the following parameter setting for the flow routing algorithm: we set

the minimum segment length to 100 m (similar to [77]) and evaluated different

settings for the area of the catchment area Ca: Ca = 7500 m2, Ca = 12500 m2,585

Ca = 25000 m2 (the latter is similar to [77], the other values are chosen to be

smaller as our test site is smaller). In general, the completeness rate decreases

and the correctness rate increases by increasing the catchment area.

The visual comparison of the results in Figure 16 shows that the flow routing

algorithm gives a description of the river centerlines in the form of zigzag lines.590

In contrast, the approximation by line segments in the forest point process

results in straight lines which represent the river centerlines in a better way and,

thus, give a higher geometric accuracy of the results. For the Wadden Sea test

site, the geometric accuracy in our results is higher by a factor 1.6 (RMSfpp =

2.67 px, RMSfr = 4.35 px). For the Austrian test site the difference is lower,595

RMSfpp = 0.95 px vs. RMSfr = 1.01 px. In contrast, the flow routing

algorithm delivers better results than the forest point process concerning the

connectivity of the network. Whereas all rivers are connected in the results

of the flow routing algorithm, our results show few gaps, especially in those

parts of the network where a small river flows into a bigger one. In order to600

overcome this problem, an extension of our model would be required, e.g. by

calculating the prior energy term depending on the width of the line segments.
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Figure 16: The extracted edges of our approach (red) compared to the reference network

(blue) and the flow routing result, Ca = 25000 m2, (yellow) with the input DTM.

However, in regard to the correctness and completeness rates, our approach

outperforms the flow routing algorithm for both test sites. Especially for the

Wadden Sea test site, our correctness rate is much higher (CRfpp = 94.4 %) in605

comparison to the flow routing algorithm (CRfr = 75.9 %). For the Austrian

test site the improvement in the correctness rate is lower, CRfpp = 76.1 %

in comparison to CRfr = 75.1 %. However, we achieve a significant higher

completeness rate, CPfpp = 76.1 % in comparison to CPfr = 58.9 %. Especially

at the stream heads and near to the image borders, our approach achieves better610

results than the flow routing algorithm, which can be explained by the fact that

the catchment area for these pixels is outside the DTM borders.

5.5. Transferability to networks in images

We also applied our method to image data showing different types of line-

network in images. In comparison to the river network detection, the gradients615

and the homogeneity of gray values (instead of heights) are calculated in the
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Table 6: Comparison of the results of our approach (fpp) with a flow routing algorithm (fr)

with varying parameter setting for the catchment area Ca.

Data set Method CP [%] CR [%] Q [%] RMS [px]

Wadden Sea (section) fpp 72.7 94.4 69.7 2.67

fr, Ca = 7500 72.0 61.6 49.7 4.35

fr, Ca = 12500 68.7 71.3 53.8 4.39

fr, Ca = 25000 60.3 75.9 50.6 4.52

Austria (section) fpp 76.1 76.1 61.3 0.95

fr, Ca = 7500 78.1 63.5 53.9 1.01

fr, Ca = 12500 68.6 73.1 54.8 1.01

fr, Ca = 25000 58.9 75.1 49.3 1.07

data term. As we did not use a DTM as input data, the term concerning the

physical consistency of the network was neglected or set to a low weight for these

data sets. Figure 17 shows the results of our method from three different types

of images. In general, major parts of the networks are detected by our approach.620

For the retina network, we end up in one connected tree. In the results of the

leaf and retina image, some of the smaller network parts are missing which can

be explained by low gradients at their borders. In the tiles image, the network

is completely covered by edges of the forest. Contrary to the junction point

process proposed by [5], our algorithm - constructed for trees - fails to recover625

correctly the junctions from the tiles image. Here, small gaps occur and the

forest is composed of several trees (see Tables 6 and 7).
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GT

[5]

ours

Leaf Retina Tiles

Figure 17: Comparisons with a junction point process [5] on different network images. Note

that our tree-based network representation does not allow the junctions of the Tiles image to

be recovered correctly.

Table 7: Quantitative comparison (correctness CR [%], completeness CP [%] and quality

Q [%]) with a junction point process [5] from the different network images of Figure 17.

Leaf Retina Tiles

CR CP Q CR CP Q CR CP Q

[5] 58.8 70.6 47.3 60.4 54.4 40.1 46.2 64.9 36.9

Ours 69.5 59.7 47.3 57.2 52.2 37.6 65.1 87.6 59.6
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In comparison to other methods based on marked point processes or active

contours, we achieve comparable results in terms or completeness, correctness

and quality (see Table 8). Nevertheless, these methods are composed of many630

disconnected components as they do not use a graph structure to describe the

network (see Figure 18). Here, our approach has advantages as it delivers the

topology of the network by using a graph structure.

GT [57] ours

[9] [6] [78]

Figure 18: Comparisons with active contour and marked point process approaches.

Table 8: Quantitative comparison (correctness CR [%], completeness CP [%] and quality

Q [%]) with active contour [78] and marked point process [57, 6, 9] approaches from the river

image of Figure 18.

Lacoste [57] Rochery [78] Lafarge [6] Verdie [9] Ours

CR 65.1 53.8 47.4 42.9 66.6

CP 70.0 49.9 55.0 75.0 61.4

Q 48.2 40.0 34.2 37.5 47.0

6. Conclusions

In this paper, we presented a stochastic approach based on marked point635

processes for the automatic extraction of networks in raster data. In our ap-

proach, the network is modeled as an undirected, acyclic graph which is itera-

tively constructed during the optimization process. The approach is evaluated
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on synthetic data and on two DTM derived from airborne lidar data. Our ex-

periments show that for all data sets, the most relevant tidal channels and rivers640

are detected, apart from some smaller inlets. In most cases, we end up in one

single tree or only a small number of trees. The quality is > 60% in all scenes.

The geometric accuracy is < 1 pixel for the synthetic and the Austrian test

site and < 3 pixel for the Wadden Sea data. We also developed a hierarchical

detection strategy and searched for channels in different resolutions of the input645

data. In this way, the parameter space can be significantly reduced. The inte-

gration of 3D information in the model improves the correctness rates in all test

sites. Our method outperforms a standard flow routing algorithm and achieves

significantly higher accuracy results, especially in nearly horizontal terrain. We

also proof the transferability of our approach to different types of networks in650

image data. Here, main parts of the network are detected by our approach. The

results are competitive in accuracy in comparison to further approaches based

on point processes in the literature.

In the future, we intend to determine parameter by training in order to be

less sensitive to the experimental setting. We also plan to investigate on faster655

optimization schemes by parallelizing the sampling mechanism as proposed by

[9] in case of Markovian energies, or by discretizing the energy formulation into

a binary variable optimization problem [79]. Such extensions require, however,

an entire remodeling of our energy formulation.
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Appendix

In order to define the Jacobian determinant of the transition function in

equation (4) from the initial configuration X to the new configuration X ′, the

auxiliary variables h and h′ are introduced. For instance, for the birth event in

Figure 3 (top) where a new node (x, y) and the width w for the new edge are

added to the configuration, three auxiliary variables are introduced. The further

parameters of the initial configuration X remain. Subsequently, the transition

can be written by 

X

h1

h2

h3


→



X

x

y

w


. (24)

Then, the Jacobian determinant for the birth event is given by

det

(
∂(X ′)

∂(X,h)

)
= det



I

1

1

1


= 1. (25)

For the death event in Figure 3, the transition can be described by

X ′

x

y

w


→



X ′

h′1

h′2

h′3


. (26)

The Jacobian determinant is similar to equation 25.

Analogously, the event of modification and split-and-merge can be described.

In both cases the absolute value of the Jacobian determinant is 1.
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