S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.6, issue.6, pp.721-741, 1984.

S. Kumar and M. Hebert, Discriminative Random Fields: A discriminative rramework for contextual interaction in classification, Proceedings of IEEE 675 International Conference on Computer Vision, pp.1150-1157, 2003.

S. Z. Li, Markov random field modeling in computer vision, 1995.
DOI : 10.1007/978-4-431-66933-3

C. Benedek and M. Martorella, Moving Target Analysis in ISAR Image Sequences With a Multiframe Marked Point Process Model, IEEE Transactions on Geoscience and Remote Sensing, vol.52, issue.4, pp.2234-2246, 2014.
DOI : 10.1109/TGRS.2013.2258927

D. Chai, W. Förstner, and F. Lafarge, Recovering Line-Networks in Images by Junction-Point Processes, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.1894-1901
DOI : 10.1109/CVPR.2013.247

URL : https://hal.archives-ouvertes.fr/hal-00814262

F. Lafarge, G. Gimel-'farb, and X. Descombes, Geometric Feature Extraction by a Multimarked Point Process, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.9, pp.1597-1609, 2010.
DOI : 10.1109/TPAMI.2009.152

URL : https://hal.archives-ouvertes.fr/inria-00503140

O. Tournaire, M. Brédif, D. Boldo, and M. Durupt, An efficient stochastic approach for building footprint extraction from digital elevation models, ISPRS Journal of Photogrammetry and Remote Sensing, vol.65, issue.4, pp.317-690, 2010.
DOI : 10.1016/j.isprsjprs.2010.02.002

M. Ortner, X. Descombes, and J. Zerubia, Building Outline Extraction from Digital Elevation Models Using Marked Point Processes, International Journal of Computer Vision, vol.24, issue.5, pp.107-132, 2007.
DOI : 10.1007/s11263-005-5033-7

Y. Verdié and F. Lafarge, Detecting parametric objects in large scenes by 695

H. Huang, C. Brenner, and M. Sester, A generative statistical approach to automatic 3D building roof reconstruction from laser scanning data, ISPRS Journal of Photogrammetry and Remote Sensing, vol.79, pp.29-43, 2013.
DOI : 10.1016/j.isprsjprs.2013.02.004

]. X. Descombes and J. Zerubia, Marked point process in image analysis, IEEE Signal Processing Magazine, vol.19, issue.5, pp.700-77, 2002.
DOI : 10.1109/MSP.2002.1028354

W. Ge and R. T. Collins, Marked point processes for crowd counting, 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp.2913-2920, 2009.
DOI : 10.1109/CVPR.2009.5206621

]. N. Ripperda and C. Brenner, Reconstruction of Fa??ade Structures Using a Formal Grammar and RjMCMC, Proceedings of the 28th DAGM Symposium, pp.705-750, 2006.
DOI : 10.1007/11861898_75

S. Gruber and S. Peckham, Land-surface parameters and objects in hydrology, Developments in Soil Science, p.710
DOI : 10.1016/s0166-2481(08)00007-x

J. P. Wilson, G. Aggett, D. Yongxin, and C. S. Lam, Water in the landscape: a review of contemporary flow routing algorithms Advances in Digital Terrain Analysis, pp.213-236, 2008.

J. F. O-'callaghan and D. M. Mark, The extraction of drainage networks from digital elevation data, Computer Vision, Graphics, and Image Processing, vol.28, issue.3, pp.323-344, 1984.
DOI : 10.1016/S0734-189X(84)80011-0

J. Fairfield and P. Leymarie, Drainage networks from grid digital elevation models, Water Resources Research, vol.12, issue.5, pp.709-717, 1991.
DOI : 10.1029/90WR02658

]. N. Lea, An aspect-driven kinematic routing algorithm Overland flow: Hydraulics and erosion mechanics, pp.720-147, 1992.

P. Quinn, K. Beven, and P. Chevallier, The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models, Hydro- 725 logical Processes, pp.59-79, 1991.

T. G. Freeman, Calculating catchment area with divergent flow based on a regular grid, Computers & Geosciences, vol.17, issue.3, pp.413-422, 1991.
DOI : 10.1016/0098-3004(91)90048-I

P. Holmgren, Multiple flow direction algorithms for runoff modelling in grid based elevation models: An empirical evaluation, Hydrological Processes 730, pp.327-334, 1994.
DOI : 10.1002/hyp.3360080405

B. Lohani and D. C. Mason, Application of airborne scanning laser altimetry to the study of tidal channel geomorphology, ISPRS Journal of Photogrammetry and Remote Sensing, vol.56, issue.2, pp.100-120, 2001.
DOI : 10.1016/S0924-2716(01)00041-7

S. Fagherazzi, A. Bortoluzzi, W. E. Dietrich, A. Adami, S. Lanzoni et al., Tidal networks: 1. Automatic network extraction and preliminary scaling features from digital terrain maps, Water Resources Research, vol.45, issue.11, pp.3891-3904, 1999.
DOI : 10.1029/1999WR900236

D. C. Mason, T. R. Scott, and H. J. Wang, Extraction of tidal channel networks from airborne scanning laser altimetry, ISPRS Journal of Photogrammetry and Remote Sensing, vol.61, issue.2, pp.67-83, 2006.
DOI : 10.1016/j.isprsjprs.2006.08.003

B. Lohani, D. C. Mason, T. R. Scott, and B. Sreenivas, Extraction of tidal channel networks from aerial photographs alone and combined with laser altimetry, International Journal of Remote Sensing, vol.3871, issue.1, pp.5-25, 2006.
DOI : 10.1145/357994.358023

H. Mayer, S. Hinz, U. Bacher, and E. Baltsavias, A test of automatic road 745 extraction approaches, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol.36, issue.3, pp.209-214, 2006.

C. Kirbas and F. Quek, A review of vessel extraction techniques and algorithms, ACM Computing Surveys, vol.36, issue.2, pp.81-121, 2004.
DOI : 10.1145/1031120.1031121

D. Lesage, E. D. Angelini, I. Bloch, and G. Funka-lea, A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes, Medical Image Analysis, vol.13, issue.6, pp.819-845, 2009.
DOI : 10.1016/j.media.2009.07.011

G. Vosselman and J. De-knecht, Road tracing by profile matching and Kalman filtering Automatic extraction of man-made objects from aerial and space images, p.755

S. Movaghati, A. Moghaddamjoo, S. Member, and A. Tavakoli, Road Extraction From Satellite Images Using Particle Filtering and Extended Kalman Filtering, IEEE Transactions on Geoscience and Remote Sensing, vol.48, issue.7, pp.2807-2817, 2010.
DOI : 10.1109/TGRS.2010.2041783

]. D. Geman and B. Jedynak, An active testing model for tracking roads in satellite images, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.18, issue.1, pp.760-761, 1996.
DOI : 10.1109/34.476006

URL : https://hal.archives-ouvertes.fr/inria-00073935

J. Hu, A. Razdan, J. C. Femiani, M. Cui, and P. Wonka, Road Network Extraction and Intersection Detection From Aerial Images by Tracking Road Footprints, IEEE Transactions on Geoscience and Remote Sensing, vol.45, issue.12, pp.4144-4157, 2007.
DOI : 10.1109/TGRS.2007.906107

P. Chothani, V. Mehta, and A. Stepanyants, Automated Tracing of Neurites from Light Microscopy Stacks of Images, Neuroinformatics, vol.14, issue.2-3, pp.263-278, 2011.
DOI : 10.1007/s12021-011-9121-2

A. Grote, C. Heipke, and F. Rottensteiner, Road Network Extraction in Suburban Areas, The Photogrammetric Record, vol.58, issue.3-4, pp.8-28, 2012.
DOI : 10.1111/j.1477-9730.2011.00670.x

P. Gamba, F. Dell-'acqua, and G. Lisini, Improving Urban Road Extraction in High-Resolution Images Exploiting Directional Filtering, Perceptual Grouping, and Simple Topological Concepts, IEEE Geoscience and Remote Sensing Letters, vol.3, issue.3, pp.387-391, 2006.
DOI : 10.1109/LGRS.2006.873875

C. Poullis and S. You, Delineation and geometric modeling of road networks, ISPRS Journal of Photogrammetry and Remote Sensing, vol.65, issue.2, pp.165-780, 2010.
DOI : 10.1016/j.isprsjprs.2009.10.004

J. B. Mena and J. A. Malpica, An automatic method for road extraction in rural and semi-urban areas starting from high resolution satellite imagery, Pattern Recognition Letters, vol.26, issue.9, pp.1201-1220, 2005.
DOI : 10.1016/j.patrec.2004.11.005

V. Mnih and G. E. Hinton, Learning to detect roads in high-resolution aerial 785 images, Computer Vision -ECCV 2010, pp.210-223, 2010.

D. Marín, A. Aquino, M. E. Gegúndez-arias, and J. M. Bravo, A New Supervised Method for Blood Vessel Segmentation in Retinal Images by Using Gray-Level and Moment Invariants-Based Features, IEEE Transactions on Medical Imaging, vol.30, issue.1, pp.146-158, 2011.
DOI : 10.1109/TMI.2010.2064333

C. Zhang, Towards an operational system for automated updating of road databases by integration of imagery and geodata, ISPRS Journal of Photogrammetry and Remote Sensing, vol.58, issue.3-4, pp.3-4, 2004.
DOI : 10.1016/j.isprsjprs.2003.09.004

M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour models, International Journal of Computer Vision, vol.5, issue.6035, pp.321-331, 1988.
DOI : 10.1007/BF00133570

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Gruen and H. Li, Road extraction from aerial and satellite images by dynamic programming, ISPRS Journal of Photogrammetry and Remote Sensing, vol.50, issue.4, pp.11-20, 1995.
DOI : 10.1016/0924-2716(95)98233-P

L. Bentabet, S. Jodouin, D. Ziou, and J. Vaillancourt, Road vectors update using SAR imagery: a snake-based method, IEEE Transactions on Geoscience and Remote Sensing, vol.41, issue.8, pp.1785-1803, 2003.
DOI : 10.1109/TGRS.2003.813850

Y. Wang, A. Narayanaswamy, and B. Roysam, Novel 4-D open-curve active contour and curve completion approach for automated tree structure extrac- 805 tion, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.1105-1112, 2011.
DOI : 10.1109/cvpr.2011.5995620

A. Baumgartner, C. Steger, H. Mayer, W. Eckstein, and H. Ebner, Automatic road extraction based on multi-scale, grouping, and context, Photogrammetric Engineering & Remote Sensing, vol.65, issue.7, pp.777-785, 1999.

M. Butenuth and C. Heipke, Network snakes: graph-based object delineation with active contour models, Machine Vision and Applications, vol.27, issue.11, pp.91-109, 2012.
DOI : 10.1007/s00138-010-0294-8

URL : http://mediatum.ub.tum.de/doc/1129448/document.pdf

M. A. Fischler, J. A. Tenenbaum, and H. C. Wolf, Detection of roads and linear structures in low-resolution aerial imagery using a multisource knowledge integration technique, Computer Graphics and Image Processing, vol.15, issue.3, pp.201-223, 1981.
DOI : 10.1016/0146-664X(81)90056-3

M. Gerke, M. Butenuth, C. Heipke, and F. Willrich, Graph-supported verification of road databases, ISPRS Journal of Photogrammetry and Remote Sensing, vol.58, issue.3-4, pp.3-4, 2004.
DOI : 10.1016/j.isprsjprs.2003.09.003

]. S. Hinz and A. Baumgartner, Automatic extraction of urban road networks from multi-view aerial imagery, ISPRS Journal of Photogrammetry and Remote Sensing, vol.58, issue.1-2, pp.83-98, 2003.
DOI : 10.1016/S0924-2716(03)00019-4

E. Türetken, F. Benmansour, and P. Fua, Automated reconstruction of tree structures using path classifiers and Mixed Integer Programming, 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.566-573, 2012.
DOI : 10.1109/CVPR.2012.6247722

F. Tupin, H. Ma??trema??tre, J. Mangin, J. Nicolas, and E. Pechersky, Detection of linear features in SAR images: application to road network extraction, IEEE Transactions on Geoscience and Remote Sensing, vol.36, issue.2, pp.434-830, 1998.
DOI : 10.1109/36.662728

A. Katartzis, H. Sahli, V. Pizurica, and J. Cornelis, A model-based approach to the automatic extraction of linear features from airborne images, IEEE Transactions on Geoscience and Remote Sensing, vol.39, issue.9, pp.2073-2079, 2001.
DOI : 10.1109/36.951102

J. Montoya-zegarra, J. Wegner, L. Ladicky, and K. Schindler, Mind the Gap: Modeling Local and Global Context in (Road) Networks, Conference on Pattern Recognition (GCPR)
DOI : 10.1007/978-3-319-11752-2_17

J. D. Wegner, J. A. Montoya-zegarra, and K. Schindler, Road networks as collections of minimum cost paths, ISPRS Journal of Photogrammetry and Remote Sensing, vol.108, pp.128-137, 2015.
DOI : 10.1016/j.isprsjprs.2015.07.002

]. R. Stoica, X. Descombes, and J. Zerubia, A Gibbs Point Process for Road Extraction from Remotely Sensed Images, International Journal of Computer Vision, vol.57, issue.2, pp.121-136, 2004.
DOI : 10.1023/B:VISI.0000013086.45688.5d

C. Lacoste, X. Descombes, and J. Zerubia, Point processes for unsupervised line network extraction in remote sensing, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.27, issue.10, pp.1568-1579, 2005.
DOI : 10.1109/TPAMI.2005.206

R. S. Stoica, V. J. Martínez, and E. Saar, A three-dimensional object point process for detection of cosmic filaments, Journal of the Royal Statistical Society: Series C (Applied Statistics), vol.434, issue.4, pp.459-477, 2007.
DOI : 10.1111/j.1467-9876.2007.00587.x

B. W. Kreher, Detektion von Hirnnervenfasern auf der Basis von diffusion- 850 sgewichteten Magnetresonanzdaten, Dissertation der Fakultät für Angewandte Wissenschaften der Albert-Ludwigs

A. Schmidt, C. Kruse, F. Rottensteiner, U. Soergel, and C. Heipke, Network detection in raster data using marked point processes

. Photogrammetry, Remote Sensing and Spatial Information Sciences XLI- B3, pp.701-708, 2016.

A. Schmidt, F. Rottensteiner, U. Soergel, and C. Heipke, A graph based model for the detection of tidal channels using marked point process, The In- Information Sciences XL-3, pp.3-115, 2015.

J. Møller and R. Waagepetersen, Statistical inference and simulation for spatial point processes, 2004.
DOI : 10.1201/9780203496930

D. Daley, D. Vere, and -. , An introduction to the theory of point processes: Volume I: Elementary theory and methods

C. Mallet, F. Lafarge, M. Roux, U. Sörgel, F. Bretar et al., A Marked Point Process for Modeling Lidar Waveforms, IEEE Transactions on Image Processing, vol.19, issue.12, pp.3204-3221, 2010.
DOI : 10.1109/TIP.2010.2052825

URL : https://hal.archives-ouvertes.fr/inria-00503149

N. Metropolis, A. W. Rosenbluth, M. Rosenbluth, and A. , Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics, vol.21, issue.6, pp.1087-1092, 1953.
DOI : 10.1063/1.1699114

W. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, vol.57, issue.1, pp.97-109, 1970.
DOI : 10.1093/biomet/57.1.97

URL : http://biomet.oxfordjournals.org/cgi/content/short/57/1/97

P. J. Green, Reversible jump Markov Chain Monte Carlo computation and 875

C. Andrieu, N. De-freitags, A. Doucet, and M. I. Jordan, An introduction to MCMC for machine learning, Machine Learning, vol.50, issue.1/2, pp.5-43, 2003.
DOI : 10.1023/A:1020281327116

S. Kirkpatrick, C. Gelatt, and M. Vecchi, Optimization by simulated annealing, Science, New Series, vol.220, issue.4598, pp.671-680, 1983.
DOI : 10.1126/science.220.4598.671

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

]. P. Salamon, P. Sibani, and R. Frost, Facts, conjectures, and improvements for simulated annealing, Society for Industrial and Applied Mathematics, vol.880, 2002.
DOI : 10.1137/1.9780898718300

J. Bondy, U. Murty, and G. Theory, Graduate texts in mathematics Generalized distance transforms and skeletons in graphics hardware, Proceedings of EG/IEEE TCVG Symposium on Visualization, pp.885-221, 2004.

N. Howe, MATLAB implementation of contour-pruned skeletonization, 2016.

Y. Verdié and F. Lafarge, Efficient Monte Carlo sampler for detecting parametric objects in large scenes, Computer Vision -ECCV, LNCS, vol.7574, pp.539-552, 2012.

C. Wiedemann, C. Heipke, H. Mayer, and O. Jamet, Empirical evaluation of 895 automatically extracted road axes, Empirical Evaluation Techniques in Computer Vision, pp.172-187, 1998.

J. Jasiewicz and M. Metz, A new GRASS GIS toolkit for Hortonian analysis of drainage networks, Computers & Geosciences, vol.37, issue.8, pp.1162-1173, 2011.
DOI : 10.1016/j.cageo.2011.03.003

M. Vetter and G. Mandlburger, Modification of high resolution airborne laser 900 scanning DTMs for drainage network delineation, pp.41-54, 2014.

M. Rochery, I. H. Jermyn, and J. Zerubia, Higher Order Active Contours, International Journal of Computer Vision, vol.24, issue.12, pp.27-42, 2006.
DOI : 10.1007/s11263-006-6851-y

URL : https://hal.archives-ouvertes.fr/inria-00070352

T. T. Pham, S. H. Rezatofighi, I. Reid, and T. Chin, Efficient point process 905 inference for large-scale object detection, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.2837-2845, 2016.