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Abstract—Determining key characteristics of High Perfor-
mance Computing machines that allow users to predict their
performance is an old and recurrent dream. This was, for
example, the rationale behind the design of the LogP model
that later evolved into many variants (LogGP, LogGPS,
LoGPS, ...) to cope with the evolution and complexity of
network technology. Although the network has received a lot of
attention, predicting the performance of computation kernels
can be very challenging as well. In particular, the tremendous
increase of internal parallelism and deep memory hierarchy
in modern multi-core architectures often limits applications by
the memory access rate. In this context, determining the key
characteristics of a machine such as the peak bandwidth of each
cache level as well as how an application uses such memory
hierarchy can be the key to predict or to extrapolate the
performance of applications. Based on such performance mod-
els, most high-level simulation-based frameworks separately
characterize a machine and an application, later convolving
both signatures to predict the overall performance. We evaluate
the suitability of such approaches to modern architectures
and applications by trying to reproduce the work of others.
When trying to build our own framework, we realized that,
regardless of the quality of the underlying models or software,
most of these frameworks rely on ‘“opaque” benchmarks to
characterize the platform. In this article, we report the many
pitfalls we encountered when trying to characterize both the
network and the memory performance of modern machines.
We claim that opaque benchmarks that do not clearly separate
experiment design, measurements, and analysis should be
avoided as much as possible in a modeling context. Likewise,
an a priori identification of experimental factors should be done
to make sure the experimental conditions are adequate.

I. INTRODUCTION

HPC architectures and application have become increas-
ingly complex and evaluating the requirements of modern
HPC applications or planning platform upgrades requires
rigorous performance characterization. In such context, the
ultimate goal is to predict the performance of an application
on a given platform, enabling users and researchers to
study scalability, deployment optimizations, extrapolation,
and what-if scenarios. A common approach consists in
convolving platform characteristics with application char-
acteristics through a simulator [1]. However, faithful pre-
dictions require to instantiate such simulators with faithful
measurements obtained on existing platforms.

Such measurements are generally obtained through well-
known or hand-tailored benchmarks. They measure key

platform characteristics such as network latency and band-
width, software overhead, memory speed, floating point
performance or energy usage. These benchmarks generally
execute precise sequences of operations and rely on data
captured from CPU hardware counters, by dynamic binary
instrumentation or from MPI tracing hooks, for instance.

Nevertheless, most of these benchmarks have “opaque”
and even sometimes arbitrary procedures, especially as hard-
ware evolves. To achieve a minimal measurement duration
and memory footprint, they perform both measurements
and the corresponding statistical analysis in a black-box
like manner, directly generating statistical summaries as
output. No intermediary data is kept after the benchmark
has finished the measurements and analysis. This absence
of intermediary raw measurements makes any performance
investigation and model validity assessment impossible to
accomplish and ultimately leading to inaccurate models and
wrong conclusions that easily go unnoticed. Furthermore,
modern architectures and operating systems have become
intricate. It is thus essential to meticulously setup and
control the environment to establish meaningful benchmark
conditions. We believe the experimental design, the measure-
ments, and the statistical analysis should be done through
rigorous and open tools to provide sound and faithful data
for model and simulation instantiation.

In this article we explain how opaque benchmarks typ-
ically work and explain how they should instead be orga-
nized to provide better information for the instantiation of
performance models. We motivate this claim by reporting
many pitfalls we encountered when we tried to reproduce
earlier strategies for performance characterization of recent
hardware. The encountered pitfalls include the impact of
compiler optimizations, the DVFS policy, the operating sys-
tem scheduler, and peculiarities of the machine architecture.
Our analysis relies on simple scripts, the R language [2],
and the org-mode’s literate programming approach [3]. Our
activity is registered in a reproducible research spirit so that
although some of these experiments were done five years
ago, we are still able to faithfully exploit them.

Section II presents some related work on performance pre-
diction through simulation that motivated our investigation
along with classical underlying network and memory mod-
els. This allows the reader to understand the rationale behind



most benchmarks’ structure. Sections III and IV present
some performance characterization of both the network layer
and memory hierarchy, illustrating the many pitfalls one
can stumble upon when pursuing such task. Section V
presents the measurement and analysis methodology we
used and which we believe to be more appropriate when
characterizing the performance of modern HPC architectures
for model instantiation purposes.

II. RELATED WORK

We present the general context of HPC performance
prediction through simulation and the most common under-
lying models. This motivates the presentation of common
benchmarks for network and memory performance charac-
terization that are detailed in Sections III and IV.

A. Performance Prediction with Simulation

The diversity and complexity of HPC applications makes
their modeling quite challenging. Depending on the expecta-
tions and scope, some approaches rely on simple first-order
analytic models (e.g., Amdahl’s law or roofline models [4]),
while others rely instead on cycle/packet-level simulations.
For large MPI applications, it is common to rely on an
intermediate approach (e.g., PMaC [1], Dimemas [5],
BigSim [6], LogGopsim [7], or SimGrid [8]) that convolves
the application and machine signatures through a high
level discrete event simulator. The PMaC framework [1],
depicted in Figure 1, offers a good example to explain the
method. Computational and communication capabilities are
first considered separately to predict the performance of a
given application A on a machine M. An MPI application can
be seen as a series of sequential computation blocks inter-
leaved with MPI calls. The processor usage (e.g., number
of instructions and floating point operations, or the hit rate
in each level of the memory hierarchy) of each block may
be obtained through an instrumented execution, a detailed
cycle-level simulation (the MetaSim tracer in PMaC), or a
static analysis. The performance of the processor (e.g., the
peak performance of each level of the cache hierarchy and
of the memory) is measured independently by a benchmark
(MAPS in PMaC) and both series of values are convolved
using the MetaSim convolver through a formula (e.g., the
maximum or the sum over cache levels of the products
of the hit rate, the number of accesses, and the inverse
of the bandwidth). Likewise, MPI operations are traced
(with MPIDtrace in PMaC) and the network parameters are
benchmarked (with PMB [9] in PMaC) and later convolved
(with the DIMEMAS [5] discrete event simulator in PMaC).
Most simulators designed for HPC use a similar approach
but differ in sophistication of the underlying models.

Many network performance models [10], [11], [12], [13],
[7] have been developed over the last 30 years. Memory
performance modeling, on the other hand, is much more
recent, especially in the context of multi-core machines.

Single-Processor Model
Machine M Application A

Characterization of Characterization of
memory performance ||memory operations
needed to be performed

:Communication Model
{[Machine M Application A

1| Characterization of Characterization of
1 Inetwork performance | network operations
needed to be performed

MPIDtrace

capabilities

MAPS

| |capabilities

MetaSim Tracer |/|PMB

i

Convolution Method
Mapping network usage needs of
Application A
to the capabilities of
Machine M

DIMEMAS

Convolution Method

Mapping memory usage needs of
Application A
to the capabilities of
Machine M

MetaSim Convolver

'’

Performance Prediction of
parallel application A on Machine M

Figure 1. General approach proposed in the PMaC Framework [1]
to predict performances of HPC applications: application and machine
signatures are convolved through a network and memory model.

Complex and undisclosed hardware architectures, with user-
transparent memory access, make it difficult to conceive a
proper model because it is hard to obtain direct and faithful
observations. As follows, we briefly discuss the efforts re-
garding network and memory performance characterization.

B. Network Performance Characterization

Network performance modeling generally involves three
aspects: the characterization of CPU and network usage as
described for example in the LogP model [14], the synchro-
nization mode between the sender and the receiver, and the
presence or lack of linearity for each of the modes. In LogP,
o is the software overhead per byte and models the CPU
occupation per message, L is the minimal transmission delay
over the network (latency), and g is the gap per byte between
two messages (i.e., the invert of the bandwidth). We can
distinguish between three synchronization protocols: eager
(totally asynchronous), rendez-vous (fully synchronized),
and detached (an intermediate behavior). Finally, piecewise
modeling accounts that different values for the previous
parameters may be used depending on the range in which
the message size falls. The more elaborate models comprise
all such aspects and are generally needed to capture the
behavior of modern MPI implementations and interconnects.

Several tools enable the measurement of network param-
eters (latency, gap, and software overhead). The Pallas MPI
Benchmarks (PMB) suite [9], SkaMPI [15], Conceptual [16],
NetGauge [17], and Confidence [18] all demonstrate unique
qualities in such measurement task. The PMB suite provides
a framework to measure a subset of MPI operations and is
detached from a performance model. It characterizes net-
work performance and helps identifying potential problems
and improvements. PMB only reports mean values for each
requested message size and number of repetitions.

SkaMPI and Conceptual feature a Domain-Specific Lan-
guage (DSL) to describe how experiments should be ac-
complished. While SkaMPI focuses only on MPI, Concep-
tual has a much broader set of backends, including MPIL.



for datasize in (0, 1, 2, 4, 8,
for repetition in (1..N) {
timer_start();
if (sender) Send() else Recv()
timer stop();
}

# Compute statistics (average, standard deviation);

.., 27°16) {

# Test for performance rupture and possibly
# reset the corresponding breakpoints;
}

# Summary report of network metrics for each data size

Figure 2. Pseudo-code to measure network performance, varying the data
size and repeating the experiment to quantify variability; with on-the-fly
statistics, piecewise models’ breaks are immediately defined.

Both make it possible to very rapidly generate complex
benchmarking programs with a few lines of DSL code.
Unlike the previous two tools, NetGauge provides a way to
explicitly output all the necessary parameters to instantiate
the LogGP [10] and PLogP [11] models for a given ma-
chine. NetGauge supports many communication protocols
including InfiniBand, Myrinet/GM, TCP/IP as the Ethernet
Datagram Protocol (EDP) and the Ethernet Streaming Pro-
tocol (ESP), and MPL

Finally, the authors of Confidence [18] note that many
sources of performance variability can be found in modern
HPC systems (e.g., OS noise, network collapse or transient
effects resulting from user timeshare) and focus on reporting
the variability that users may actually face and which is
hidden by common benchmarks. Such information about
variability could be used for simulation purposes provided
its dependence on message size is properly characterized.

C. Memory Performance Characterization

Roofline estimations [4] are the simplest way to esti-
mate memory access performance. The principle of such
benchmarks is to saturate the memory utilization, effectively
defining the peak access rate (GB/s). The Performance
Modeling and Characterization (PMaC) framework [1] relies
on the MultiMAPS benchmark to measure the memory
bandwidth for different data sizes, strides and line sizes. By
changing the data sizes, this benchmark captures different
characteristics of the memory cache levels. PChase [19]
also assesses memory latency and bandwidth on multi-socket
multi-core systems, captures the interference between CPUs
and cores when accessing memory, and ultimately provides
a richer model.

III. NETWORK LAYER PERFORMANCE MODELING

The simplest network characterization strategy consists
in measuring the time it takes to transfer a given amount
of data between two endpoints. Measurement variability
should also be assessed since network stack interactions are
complex. Figure 2 presents this prevailing approach used
by many tools (described in Section II). Increasing the data
size in powers of 2, the benchmarks measure N times the
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Figure 3. Time as a function of message size for different communication
libraries using a Myrinet/GM network (taken from [20] as example).

same experimental configuration. In this example, a simple
send/recv is placed to illustrate the principle although more
complex operations may be also used (e.g., non-blocking,
one-sided, collective). The measured operation can also be a
more complex pattern involving several message exchanges,
as in the LogGP [20], the LoOgGP [21], and the PLogP [11]
benchmarks that directly output model parameters. Most
strategies employ per message size measurements to calcu-
late statistics (bandwidth, latency, etc.) in an online fashion.
If piecewise linear modeling is investigated, the behavioral
breaks are automatically detected during the experiment,
using linear extrapolations from the already measured points
or outlier definition schemes. At the end of the main loop,
tools report the aggregated results per operation and per data
size in textual or CSV file format for external exploitation.

The automatic detection of protocol changes depending on
the message size has been the object of several strategies.
NetGauge [20], PLogP [11], and LoOgGP [21], for instance,
provide good examples. When linearly increasing the mes-
sage size, and for every new measurement, NetGauge checks
for protocol changes by using the mean least squares devia-
tion (Isq) between the previous point that started a new slope
and the latest measurement. If the [sq has changed more than
a factor defined by the analyst, NetGauge waits for five new
measurements before confirming the protocol change. This
technique avoids that “anomalous” measurements mislead
the detection of true protocol changes. In PLogP, at every
new measurement when increasing the message size in
powers of 2, the implementation extrapolates the previous
two measurements and checks if the difference between the
new measurement and the linear extrapolation is within an
acceptable range. If that is not the case, a new measurement
is undertaken with a message whose size is the mid-value
between the latest two measurements. This is repeated,
halving the intervals, until the extrapolation is matched
by measurements or a maximum number of attempts is
attained. The LoOgGP linearly increases the message sizes,
using the same approach as NetGauge, but adopts an offline



analysis with user intervention. After removing outliers, a
local neighborhood of a configurable extent is defined for
each measurement. If a measurement has a maximum value
in a neighborhood, it is considered as a protocol change. It is
up to the analyst, using plots for T, (s) (overhead) and T}, (s)
(gap), to finally decide if detected points are real protocol
changes or not. Despite the analyst’s mediation, authors state
that the mechanism is sensitive to the neighborhood size and
the message size steps during the measurement stage.

We detail potential problems faced by these common
methods to model network performance. Our recommenda-
tions to avoid such pitfalls are presented in Section V.

1) Impact of Temporal Perturbations: The system being
measured may suffer temporal perturbations which may
mislead completely the result interpretation. Perturbations
can be natural or caused by external activity in a poorly
isolated system. Repeating the benchmark would probably
lead to divergent estimations. Without a manual check, the
measurements could be filtered out as outliers, or affect the
online detection of protocol changes. An anomaly could pass
as a break point by the heuristics implemented in NetGauge
and PLogP, for instance. Concerning results, there is no
guarantee that the reported breaks are actually meaningful.

2) Impact of Message Sizes in the Network Modeling:
Another issue regards the input message sizes used in the
experiments, as they are frequently biased. Using messages
in powers of 2 may miss the real behavior of the network
software stack. Some values, such as 1024 for instance,
may have special behavior coded into the network layers
that are nonlinear when compared with close values directly
smaller or larger than that one. Such small changes in the
data sizes might pass undetected by statistical analysis that
is conducted without supervision. On benchmarks that use
linear increments, such as NetGauge and LoOgGP, the bias
issue is still present because the measurements depend on
the selected starting message size and the increment value.

3) Impact of Preconceived Assumptions in the Analysis:
Figure 3, reported by Hoefler et al. [20], demonstrates a
typical case of a piecewise network modeling with protocol

changes. They report a single protocol change for messages
larger than 32KBytes. However, a new look to the data could
indicate another break at 16KBytes, when the slope of the
OpenMPI (G x s + g) and OpenMPI (o) slightly changes.
So the assumption of the presence of a fixed number of
breakpoints might mislead the network modeling.

Current MPI and network driver implementations typi-
cally incur several synchronization modes (eager, detached,
rendez-vous) and each of these might need a piecewise
modeling. Figure 4 depicts an example for the Grid5000’s
Taurus cluster (OpenMPI 2.0.1, TCP, 10Gb Ethernet). We
depict the network modeling of the send overhead (left),
receive overhead (center), and the network latency and band-
width (right). Raw observations (points) and the piecewise
linear (the lines are bent because of the logarithmic scale)
regression calculated from them (black line) are plotted as
a function of the message size. The color indicates probable
changes in the communication protocols. The receive oper-
ation (blue area on the center plot) for the medium message
size has a much higher variability than for other message
sizes. The same happens, but with a different pattern, for
the send overhead (yellow on the left). In our case, since
sizes were randomized (instead of taking measurements in
an incremental order, as it is commonly done), we can safely
conclude that this variability is a real phenomenon and not
an artifact resulting from temporal perturbation.

IV. MEMORY HIERARCHY PERFORMANCE MODELING

Our initial objective was to build upon the Mul-
tiMAPS benchmark. This benchmark is an upgraded version
of the MAPS benchmark, which itself is derived from
STREAM [23]. Figure 6 presents the pseudo-code of the
main algorithm behind MultiMAPS. It measures the time to
execute the for loop in which it makes consecutive memory
accesses (by stride) to an array of elements. At the end, it
computes the memory bandwidth. Two factors are expected
to affect such bandwidth estimation: the buffer size and the
access stride. Together, they somehow capture the temporal
and spatial locality behavior of the memory hierarchy.
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Figure 4. Network modeling of the Grid’5000 Taurus cluster: multiple protocol changes require an initial neutral look regarding the number of breakpoints.



Processor type Frequency #cores Word size L1 cache L2 cache L3 cache

Opteron 2.8GHz 2 64 64KB 2-way s.a. 1IMB 16-way s.a. -

Intel(R) Pentium(R) 4 CPU  3.2GHz 2 64 16KB 8-way s.a. 2MB 8-way s.a. -

Intel(R) Core(TM) i7-2600  3.4GHz 8 64 4 x 32 KB 8-way s.a. 4 x 256 KB 8-way s.a. 8 MB 16-way s.a.

ARMV7 Proc. rev 1 (v71) 1.0GHz 2 32 32KB 2-way s.a. 512 KB -
Figure 5. Technical characteristics of the CPUs used in this study.

Figure 7 shows typical MultiMAPS results, in this case for
strides 2, 4, and 8 on an Opteron machine (see Figure 5 for
more details). As the size of the buffer increases, the memory
bandwidth decreases. Three plateaus directly correspond to
the L1 cache, L2 cache, and main memory sizes. Strides
have no impact when all accesses are done inside L1.
However, they play an important role when the array size
no longer fits in L1, since bandwidth is almost reduced by
a factor 2.

Such behavior seemed quite regular and sound so we
envisioned to directly use the MultiMAPS benchmark for
characterizing memory capabilities. Our goal was to improve
the SimGrid [8] processor model using an approach similar
to the one of the PMaC framework [22]. However, when
trying to reproduce this approach with recent hardware,
several unexpected difficulties forced us to change our initial
plan.

First, a closer inspection of the MultiMAPS code revealed
that it is much more complicated than the simple STREAM
benchmark on which it was based. Many parameters require

MultiMAPS(size, stride, nloops) {
allocate buffer[size];
timer start();
for rep in (1..nloops)
for i in (0..size/stride)
access buffer[stride*i]; // s = s+buffer[stride*i]
timer stop();
bandwidth=(naccesses*sizeof(elements))/elapsed time;
deallocate buffer;

Figure 6. Pseudo-code of the benchmark allowing to evaluate performance
in the different levels of the cache hierarchy.
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Figure 7. Excerpt from [22] exploiting the output of MultiMAPS and
illustrating the impact of the working set and of the stride on performance
of an Opteron. Performance drops when array exceeds 64KB and 1MB.

careful tuning, which is extremely hard without prior knowl-
edge of the benchmark and the machine it is running on. We
anticipated that we would have to modify many parts of the
benchmark to understand more deeply the performance on
modern architectures. A second issue was that the output
of the benchmark is very verbose and it is unclear how
the final plot is obtained from the measured data. Finally,
our initial results were far from the expected bandwidth
peaks, which was surprising as we thought that achieving
the maximal performance should be relatively easy with
such simple programs. Unfortunately, the benchmark only
reported aggregated values, without raw data to allow us to
better understand where the problem could come from.

Therefore, we decided to try to reproduce the essence
of the MultiMAPS approach, but with our own code. We
wrote our own benchmark script inspired by MultiMAPS,
trying to mimic the spirit of the reported experiments.
Although we aimed at studying all levels of the memory
hierarchy with parallel execution, we quickly discovered that
there is huge number of challenges even for the simplest
case. Consequently, we restrict our investigation report to
characterize solely L1 cache READ bandwidth, for a single-
threaded program.

Building on our previous experience with network mea-
surements (see Section III), our first concern was to thor-
oughly randomize each parameter of the micro-kernel (stride
and size). Figure 8 shows the first experimental results on
a Pentium 4 CPU (see Figure 5 for more details). Each
dot represents one measurement (42 repetitions for each
configuration) of the bandwidth as a function of the buffer
size. The color indicates the stride, while the solid lines rep-
resent smoothed local regressions indicating measurement
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Figure 8.  Attempt to replicate the behavior shown in Figure 7 with a

Pentium 4. Our measurements our much more noisy despite the controlled
environment. We obtained similar behavior on other kind of architectures.



trends. It is clear from this graph that there is an enor-
mous experimental noise for every buffer size. Furthermore,
even when ignoring the variability and focusing solely on
mean values, the influence of the stride is ambiguous and
bandwidth does not decrease by a factor of two as one
could expect. These results are far from what was expected
and they are very different from the ones presented in
Figure 7. We thoroughly investigated the reasons behind this
behavior and can now report several evaluation pitfalls. To
illustrate different phenomena on the simplest cases, the rest
of the results and figures in this section are limited to the
measurements conducted with the stride 1.

1) Impact of code and compiler optimization (loop un-
rolling and vectorization): Previous studies assumed that
the absolute value of the bandwidth depends mostly on the
processor and memory bus frequencies, as the compiler will
automatically optimize the corresponding simplistic kernel.
Nevertheless, there are some program optimizations that
can have a significant influence on the bandwidth values,
surprisingly sometimes even negative.

The first optimization concerns the type of the elements
the array is composed of. In the initial version of the code,
the buffer is a large array of integers. Integer size in the
C language is 4 Bytes. If the whole buffer size is 1 KB,
then the buffer is composed of 1024 B/4 B=256 integers.
If the buffer type is changed to long long int which has
size 8 B, the same array size of 1 KB could be used to store
two times less elements (1024 B/8 B=128). The loop iterator
traverses the whole buffer element by element, multiplied by
stride. Hence, we expect there are two times less accesses
for the long long int (8 B) case than for the initial int (4 B),
resulting in a higher bandwidth. This is a good example of
how data level parallelism and vectorization can improve the
performance.

The second optimization is related to the loop unrolling.
This code transformation attempts to minimize branch
penalty by unwinding the code inside the loop. Usually, this
reduces the execution time, but with a larger program binary
size. Common sense implies that automatic loop unrolling
present in many compilers always leads to performance
gains. However, as shown in Figure 9, even for the simple
code of Figure 6, manually unrolling the loop proves to be
very beneficial for performance on a recent Intel Core i7-
2600 (see Figure 5 for more details).

Figure 9 shows how increasing element type from 4 B
int to 8 B long long int essentially doubles the bandwidth.
The same trend, only a bit mitigated, continues with larger
elements. Loop unrolling also has a positive effect, as the
bandwidth increases in all cases except one. For the larger
vector size (four float64 elements) with loop unrolling,
instead of the expected highest values, the actual results
are extremely low. We did not fully investigate the reasons
behind this anomaly, as such understanding is secondary to
this work, and we were constrained by time.
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Figure 9. Vectorization (vertical facetting) and loop unrolling (horizontal)
effects on memory bandwidth (on Y), for different buffer sizes (on X).

Another very important phenomenon demonstrated by
these plots is related to the point at which performance
drops. One can observe that the differences between the
buffer memory sizes that fit into L1 cache and the ones
that are too large become more noticeable as the bandwidth
increases. Even worse, for the 4 B element type there is
no drop at all when buffer size surpasses the cache size.
The main cause for this behavior is that we are not using
the full processor capacity in term of memory access. When
loop unrolling is added and the element size increased, we
approach the true performance limit of the processor.

This suggests that there could be other deviations hidden
when the full potential of the machine is not reached. Note
that the code complexity (manual vectorization and loop
unrolling) required to reach such peak performance makes
its use for classical program performance extrapolation quite
questionable.

2) Impact of Dynamic Voltage and Frequency Scaling
(DVFS): Recently, it has become prohibitive to constantly
keep the processor frequency as high as possible, due to the
extensive energy consumption. Indeed, an increasing number
of applications where lowering the processor frequency can



lead to significant energy savings without affecting the
overall execution time has been reported.

Therefore, to decrease the energy consumption, many pro-
cessors nowadays operate with ondemand CPU frequency
governor. This policy enables the operating system to scale
the frequency up or down by choosing the most appropriate
one from several possible values (modes). These changes
may even occur during the application run if specific parts
of the code have different computational needs. Alas, from
the user’s perspective, it is very hard to know exactly how
this mechanism works. It is, however, generally known
that high frequencies are more effective for computation
intensive code blocks, while low frequencies are preferred
for memory-bound regions. Nevertheless, there are also
borderline cases which are hard to optimize and for which
frequency prediction is extremely challenging.

It turns out that the seemingly simple cache memory
benchmark code, presented in Figure 6, is such a compli-
cated application. In this program, elements of the array
are accessed in a loop of nloops iterations. Increasing the
number of repetitions should proportionally increase the
overall time to run the program, thus the nloops parameter
should not have any influence on the final bandwidth.
However, it proved to be the opposite for the Intel Sandy
Bridge (i7-2600, see Figure 5 for more details) machine
with ondemand governor (Linux version 3.1.0-1-amd64 with
Debian 3.1.8-2), as shown in Figure 10. In fact, when the
amount of work required from the processor is low, the
operating system decides to use the lowest frequency, thus
the array is accessed slower and the resulting bandwidths are
low (top left plot of Figure 10). On the contrary, when the
operating system anticipates a large number of accesses, it
increases the frequency to the maximum value, which leads
to the highest bandwidths (bottom right plot). The most in-
teresting results can be observed for the intermediary values
of nloops where operating system dynamically changes its
decision about the optimal frequency for a given code block.
Therefore, for each of the 42 repetitions of the same buffer
size, the measured bandwidth varies between several modes
and the performance variability is higher. This illustrates that
even for simplistic codes it may be extremely difficult to
anticipate which frequency will be used, and thus what will
be the corresponding performance.

One may argue that such behavior can be avoided if the
user takes full control of the processor frequency. However,
this requires some programming effort and an expertise in
the performance of every part of the application. Every
operating system might have a different mechanism for
controlling the frequency, with varying latency for changes
to take effect. Moreover, in some cases, frequency changes
require superuser rights that often are unavailable on pro-
duction platforms. Finally, the ondemand governor has many
advantages and most users want to keep part of its benefits,
even though its behavior can sometimes be unpredictable.
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Figure 10. Memory bandwidth as a function of the buffer size for four
workloads (facets) as indicated by the nloops parameter of code of Figure 6.
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Figure 11. Real-time scheduling priority on an ARM Snowball processor:
the left plot shows the bandwidth according to the buffer size, with two
modes (higher and lower); the right, as a function of the sequence on which
measurements are taken, highlighting the temporal anomaly.

3) Impact of Operating System Scheduler: Despite the
simplicity of the single-threaded benchmark, and the exclu-
sive access to the platform while performing experiments,
inevitably some external influence still exists. Primarily,
the operating system with its own processes runs on the
processor. To minimize its influence, we removed all the un-
necessary OS services. Additionally, the core on which our
program is executed was strictly pinned, avoiding potential
thread migrations during the execution.

Our past experience in evaluation of lightweight thread
libraries had taught us that better and more stable perfor-
mances can sometimes be obtained by using the real-time
scheduling policy of the OS. However, this proved to be the
opposite when running experiments on an ARM Snowball
processor with Unix-like Linaro OS. The left plot of the
Figure 11 shows that there are two modes of execution.
The first mode, the one with higher bandwidth values, is
similar to the results we have obtained with other scheduling
priorities. On the other hand, the second mode has the
bandwidth values that are almost 5 times lower and they
occur in approximately 20-25% of the measurements. There
are 42 repetitions for each buffer size and the order in which
single runs are executed is completely randomized. Approx-
imately the same number of the second mode executions is
present for all buffer sizes. The right plot of the Figure 11



shows exactly the same data as the left plot. The difference
is that the x-axis now represents the order in which each
measurement inside one experiment were conducted. The
right plot of Figure 11 indicates that the whole second mode
occurred throughout a single period of time during the whole
execution of the experiment. When repeating experiments
with different input configurations, the same phenomena was
regularly reproduced. This suggests that the second mode is
almost certainly caused by an external process running in
parallel and which is occasionally scheduled to the same
core when the real-time policy is activated.

There are two techniques that enabled us to easily spot
the described phenomenon, while it would have proba-
bly passed unnoticed or misunderstood with classical ap-
proaches. Firstly, if measurements had been done in a com-
monly used sequential order, they would wrongly suggest
poor performance for a specific subset of buffer sizes.
Randomizing order in which single measurements inside one
large experiment are performed solves this issue. Secondly,
it was important to postpone the data aggregation and to
log all the relevant information during the experimentation
stage. By looking solely at mean bandwidth values and
variance, which is a simplistic approach dominantly used
in our community, the performance obtained with real-time
policy appears worse, but the existence of two modes is
completely hidden.

4) Impact of Architecture (the ARM paging issue): Fig-
ure 12 shows the result of four consecutive experiments on
an ARM Snowball processor using exactly the same source
code and inputs. The 42 repetitions for each memory size
(on each plot) are represented by boxplots, demonstrating
little measurement variability (thanks to careful control
and optimization of the experiments). Astonishingly, the
performance drop, as the buffer size increases, occurs at
different places depending on the experiment, just as if
some “external entity” was deciding at the beginning of the
experiment the kind of very stable performance one would
observe. Although the lower and higher values of buffer
size always exhibit a similar behavior, the middle part (from
50% to 100% of the L1 cache size) is highly unpredictable.
After a long investigation, we finally discovered that the
source of this surprising phenomenon comes from the way
the operating system allocates physical memory pages on
ARM processors. In general, operating systems allocate
nonconsecutive 4 KB physical memory pages, choosing
them randomly from a pool of available pages. The set-
associativity of that generation for ARM processors is only
4, and the L1 cache size is 32 KB. In such a scenario,
without doing the appropriate page coloring, a bad choice
regarding physical pages causes more cache misses, hence
the drop of overall performance. During one experiment
run, although we do malloc/free repeatedly on each buffer,
the same pages gets reused. Hence, the buffers actually
start from the same physical memory location for each
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Figure 12. Four experiments (facets) on the ARM Snowball processor:
boxplots depict the memory bandwidth as a function of the buffer size; an
anomaly appears when the buffer size gets close to the L1 cache size.

memory size during one experiment, which explains why
there is no variability in the results despite the measurement
randomization.

Since it is not possible for a user program to fully take
control of the page allocation strategy, we applied an alter-
native memory allocation technique for the buffer to better
assess this phenomenon. In the initial algorithm, we used an
individual malloc function call for each buffer size, running
the experiment, and finally freeing the memory at the end of
the loop. In the subsequent versions, we decided to do only
one memory allocation at the beginning of our program for
all the measurements. We allocated one large memory block
(e.g., 2 MB) that is significantly larger than our maximum
buffer memory size (50 KB in these experiments). After that,
for each memory size and repetition, we randomly chose
the starting point inside our allocated memory to consider
it as buffer for the experiment. This way we managed to
correctly evaluate the impact of different physical memory
pages during one experiment run, avoiding to always use the
same pages. This physical address randomization allowed us
to obtain completely reproducible (although more variable
internally) experiments, yielding always similar bandwidth
values (typically, the top part of the left graph in Figure 11).

If we had used the second allocation technique from
the start and concentrated only on maximum/median/mean
values of bandwidths, we would have observed very regular
behavior with a clean drop on L1 cache size. But we would
have missed this physical memory allocation phenomenon,
ultimately leading to incorrect model instantiating.

V. PROPOSAL OF A COMPREHENSIBLE EXPERIMENTAL
METHODOLOGY FOR PERFORMANCE BENCHMARK

We propose a three-step methodology according to the
fundamentals of the Design of Experiments [24]: (1) the
experimental design, (2) the benchmark running engine, and



(3) the results statistical analysis. We believe that separated
stages, together with careful documentation and environment
capture, enable us to avoid all pitfalls that we presented.
Note that MPI benchmarking tools structured in such a way
have also recently been independently proposed [25].

The experimental design deals with the factors that drive
the system behavior under evaluation. Randomization plays
a central role: each factors’ values and the order in which
each factor combination is measured should be properly
randomized. This guarantees that the presence of temporal
anomalies in the setup remains independent of the factors’
values. Uncertainty is evaluated and reduced through repli-
cated measurement of each factor combination. During the
second step, the order on which measurements are taken
must be dictated by the experimental design. Thus, the
benchmark engine reads each factor combination from its
input, conducts the measurement on the target platform, and
reports the details of every individual measurement in one or
multiple output files, along with a lot of meta-data about the
measurements and the environment (machine information,
operating system and compiler versions, compilation com-
mand, benchmark parameters, network configuration, etc.).
Beyond increasing the chances for reproducing the experi-
ments, these meta-data support better results interpretation.
This is especially useful when comparing two experimental
campaigns that have similar inputs and completely different
outputs. A statistical analysis is carried out during the third
stage of our methodology, after the experiment campaign
execution has finished. We avoid doing any on-the-fly ag-
gregation and keep all information, delaying the analysis, in
order to spot the outliers and strange behaviors, instead of
losing them.

The source code we used and raw data is available
(network! and memoryz) to anyone interested in reviewing,
running or improving our methodology on other platforms.

A. Network Measurement Methodological Details

The main factors to consider when instantiating a point-to-
point communication model are message size and synchro-
nization mode. To characterize these behavior, we relied on
three kinds of operations: blocking receive, asynchronous
send, and ping-pong. The send and receive software over-
head is calculated through a blocking receive and an asyn-
chronous send, respectively. The benchmark guarantees that
the message has already arrived in the receiver when the
receive operation is called. In both cases, the elapsed CPU
time captures the overhead of buffering and sending data
to the network card. The network latency and bandwidth
are calculated using the results of the ping-pong opera-
tion. These three network-related operations are sufficient
to calculate all the parameters for any LogP-based model.

ICode available at https:/gitlab.inria.fr/simgrid/platform-calibration/
2Code available at https:/gitlab.inria.fr/stanisic/cache_repparl7/

To characterize the performance of communications for
message sizes between a and b (in bytes), we generate
random sizes using the following distribution:

10X, where X ~ Unif(log;o(a),log,o(b)). (1)

The resulting combinations of operation type and sizes, one
per line, are registered in a text file that is provided to the
measurement engine (the code is available in the SimGrid’s
platform calibration repository). This engine is a simple MPI
program that registers the time it took to run the particular
operation on the target network for all the message sizes
indicated in the output. Finally, in the third step of our
methodology, a script written in the R Language [2] carries
out a supervised analysis. The breakpoints are manually
provided by the analyst and a piecewise linear regression
is calculated for each of the three operations. The send and
receive software overhead are measured using the blocking
receive and the asynchronous send, latency and bandwidth
are obtained using the ping-pong measurements. Plots are
generated so a human can check the linearity assumption,
if the breakpoints are coherent, and the outcome of the
regressions. Despite being manual, this procedure guarantees
that results are meaningful from an experienced analyst point
of view.

B. Memory Measurement Methodological Details

Despite the simplicity of our memory benchmark (see
Section IV), the factor set revealed much larger than what
we initially thought. These parameters, grouped by features,
are presented in Figure 13 in a modified “cause-and-effect”
diagram [24]. We have written a small independent program
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Figure 13. Influential factors to be carefully managed during experiments.

which considers all the factors listed in Figure 13. This
code randomizes the order of the experiments, combining
all involved factors. As output, it generates a CSV file
that is the textual representation of the design. The CSV
is used as an input by the benchmark which is, in the
second stage of our methodology, a C program based on the
code listed in Figure 6. It executes all the experiments and
reports the memory bandwidth for every factor combination.
The analysis is carried out using literate programming in
orgmode/R.



VI. CONCLUSION

In this paper, we presented our attempt to reproduce
the approach of previous work in the context of network
and memory modeling. The model instantiation generally
builds on opaque benchmarks that can lead to many pitfalls.
The investigated phenomena are so complex that simplistic
approaches can lead to severely biased measurements that
make simulation predictions unreliable. We explain how
such biases may be avoided through relatively simple pre-
cautions. Thorough randomization is an essential ingredient
but should also be allied to a white-box approach with a
clear separation of concerns (experiment design, experiment
engine, result analysis), a careful documentation, and a
capture of the environment.

In a near future we plan to work on automating and
combining various tools we have built to instantiate HPC
network models while keeping the same white box and
randomization methodology. One of the challenges will be
related to the production of a coherent and easily under-
standable reports over a complex set of measurements, and
allowing to reliably characterize a whole cluster.
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