N

N

Ontology-Based Flexible Multi Agent Systems Design
and Deployment for Vertical Enterprise Integration
Christos Alexakos, Manos Georgoudakis, Athanasios P. Kalogeras, Spiridon L.

Likothanassis

» To cite this version:

Christos Alexakos, Manos Georgoudakis, Athanasios P. Kalogeras, Spiridon L. Likothanassis.
Ontology-Based Flexible Multi Agent Systems Design and Deployment for Vertical Enterprise In-
tegration. 19th Advances in Production Management Systems (APMS), Sep 2012, Rhodes, Greece.
pp.80-87, 10.1007/978-3-642-40361-3__11 . hal-01470605

HAL Id: hal-01470605
https://inria.hal.science/hal-01470605
Submitted on 17 Feb 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01470605
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Ontology-based flexible multi agent systems design and
deployment for vertical enterpriseintegration

C. Alexako$, M. Georgoudakfs A.P. Kalogerasand S. L. Likothanassis

! Dept of Computer Engineering and Informatics, Ursitgrof Patras, Greece
{al exakos, | i kot han} @ei d. upatras. gr
2|ndustrial System Institute, Greece
{kal oger as, geor goud} @si . gr

Abstract. Empowering autonomic control in the enterpriseimment highly
contributes in the quest for a higher level of itkélity. Multi-Agent Systems
(MAS) may be utilized to this end along with thaeprise environment model
leading to a decentralization of the manufactugimgduction processes. The
current work proposes a framework along with theessary software tools for
the modeling of MAS through ontologies, its des@yd deployment in the en-
terprise / manufacturing environment.

Keywords: ontologies, multi agent systems, vertical entsgpimtegration

1 I ntroduction

The need to increase the competitiveness of emegyrespecially in the manufac-
turing sector, is profound. Intra-enterprise infEn@bility is a prerequisite to this end,
making possible the vertical integration of systéragplications residing at different
levels of the classical manufacturing environmeptdrchy. This need is especially
felt when modern enterprises have to support sdehraced business models as mass
customization that require a robust enough enviemtrthat may react effectively and
adapt to unexpected events and uncertain timingributing intelligence and provid-
ing autonomy to different levels in the manufaatgrienvironment hierarchy may
positively contribute to this end. MAS along withmedel representation of the enter-
prise environment and the relevant semantics ar@afmentals for such an approach.

The proposed framework is based on the conceptinoples definition of the
functionalities of an integration MAS that permitsystem semi-automatic
implementation and deployment, with the followirtatienges:

e The description of MAS modules, their function&itj processes and data ex-
change protocols must follow a human understandable Model-based design
using UML is a good paradigm for design of systémisavior by engineers.

e The implementation phase of MAS must include tlastigossible code implemen-
tation, accelerating the deployment procedure arfdreing system re-usability.
The use of modular system architecture, where thduhes can be easily devel-

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

oped and re-used, in combination with code-geraratif system main compo-
nents can significantly decrease the need for podgramming.

e System definition must be computer-understandaileywing computer software
to read MAS description and proceed to the appatpictions, such as code gen-
eration, agent creation and data mapping. XML abd- Rre open standards that
can easily define concepts, be delivered to systerdparsed by them.

e The information integration between heterogeneoistems is a major issue in
enterprise system integration; without the “commoderstanding” of the data ex-
changed between systems the orchestration of thiedss processes is meaning-
less.

In order to face the aforementioned challenges, pheposed framework is
accompanied by a concrete methodology for MAS dedim implementation and
deployment phases based on GAIA [1] agent-oriestdtivare engineering (AOSE)
methodology. Furthermore, a set of tools supparttinee phases of the methodology
establishing an integrated architecture for thenéaork.

The rest of the paper is organized as follows:ektien 2 a brief presentation of the
related works on ontology-driven design and depleymof MAS is provided.
Section 3 presents the proposed framework methggadmd its main components
along with its supporting tools. Finally, some cluston is given in chapter 4.

2 Related Work

MAS model development is supported by a number ©SE methodologies and
technologies [2], characterized by different leveflsnaturity. GAIA methodology is
very popular [3] because it provides a strong desapl for engineers in order to
describe the functionalities of a MAS along witte thehavior of the agents acting in
it. According to the GAlA-approach the behavior dnteraction of an agent-based
system is described by a set of roles with rolatedl activities and a set of interac-
tions among the roles. GAIA is used in various apphes for MAS design in enter-
prise / manufacturing integration [4].

During the recent years ontologies have been uséadoés in model — driven archi-
tectures for defining the detailed functionality @MAS. The semantic basis is the
frame-based ontology ONTODM. ONTOMADEM [5] is a kmedge-based tool for
designing MAS based on the MADEM MAS design metioggp. ONTOMADEM is
using a frame-based ontology constructed with Beotédol. Bittencourt et al. [6]
propose an ontological model for defining MAS fuanglities and components driv-
en for two ontologies, one describing GAIA methadpl agents and one describing
JADE agent implementation. The model uses SWRLsride mapping GAIA agent
roles and activities to JADE agents and behavidexertheless, a common denomi-
nator in most of these approaches is the lack winaatic creation of MAS.

In the runtime phase of MAS, ontologies in mostrapphes are used for support-
ing semantics common understanding of the intedratata exchanged between
agents. Few proposals elaborate ontologies fromMAS design phase to deploy-
ment. O-PRS (Ontology driven Procedural Reasonigie®n like model) [7] utilizes

OWL ontologies to express the concepts in Belidyesire, Intention (BDI) agent
architecture. The ontologies add the appropriatgaséics to the exchanged messages
in order for the agents to understand how to agtl&$ et al. [8] proposed an ontolo-
gy-driven framework for design and deployment of $4n top of Java Agent DE-
velopment Framework (JADE) framework (http://jadatt.com/). The framework is
based on the definition of MAS functionality usitftyee Ontology Web Language
(OWL) ontologies (Data Source, Task-Method and Dgplent). For MAS deploy-
ment, special purpose agents (Controller Agent@odfigurator Agent) are used in
order to create and monitor task agents accorditiget semantic configuration.

3 Proposed Integration Framewor k

3.1 Design to deployment methodology

The proposed methodology covers the three phasggstém engineering: design,
implementation and deployment. For simplicity, tlesting phase is considered as
part of the implementation phase. Figure 1 depietsmajor and optional steps of the
methodology in the three phases.

Design Phase Implementation Phase Deployment Phase
MAS sgmgntlcally » MAS code generation > MAS deployment
definition
A A
I_ - - == _L _____ A l ___________ i .
| New ontologies [| New modules | Major Steps
| implementation : | implementation : —————— Optional Steps

Fig. 1. Design to Deployment Methodology

The core aspect of the proposed methodology iSVIA8 semantic definition in
terms of ontologies. Ontologies represent powedals for defining the knowledge
of a domain. In the case of enterprise system iiate&m knowledge includes the busi-
ness processes, the exchanged information anddsssiogic executed from the par-
ticipating systems. Ontologies describe the corcapterms of axioms that for the
shake of simplicity can be considered as sentesgek as “Agent A executes the
Invoice Procedure”. In modern ontology languagks ®WL, a more object oriented
approach is used where entities follow a hieraalhitructure enforced by relation-
ships between them. OWL is an ontology languageigéad on the concept of Se-
mantic Web, thus its main representation formdtased on XML and RDF, permit-
ting both human and computer understandability. thas reason, it is used as the
basis for MAS definition in the proposed framework.

OWL Ontologies follow the T-Box and A-Box distinoti which is drawn in De-
scription Logics. OWL ontologies are composed aof functional parts, the first part
is the ontology scheme (T-Box) and the second sstaof instances of the ontology

scheme containing the data related to the descdbathin (A-Box). The proposed
methodology uses as core ontology scheme the OWIOGMaia MAS Ontology)
ontology that defines the core entities of MAS systfollowing the widely accepted
GAIA design methodology. Each agent role is depliete an instance of OWL-GMO.
Furthermore, OWL-GMO provides entities and relagidar the definition of agent
behaviors and messages exchanged. Other pre-gxistinlogies or newly-composed
ones can be integrated in the core ontology schieroeler to define the information
semantics of the data used by the participatintesys and agents.

The implementation phase includes the code geperafithe components defined
by OWL-GMO followed by the packaging of external aades that execute specific
business logic functionalities. Agents and theirctionalities (behaviors and message
exchanged) are implemented following the specificabf agent implementation of
JADE. JADE supports the implementation of distrdzlitsoftware agent systems
where software agents are running in different sio08toreover, the agent instances
are managed according to globally accepted FIPAcifipations. Finally, JADE
agents follow Agent Communication Language (ACL)yell-structured schema for
message exchange.

The specific business logic or functionalities thave to be executed by the agents
must be implemented as modules providing specifidsAor invocation by the core
agent implementation. In this case, the binarigjawa code of these modules will be
included in the core generated code. Finally, thdecwill be compiled and ready for
deployment to the real enterprise environment.

3.2 Architecture components

Each distinct step of the aforementioned methodolsgsupported by software
tools either providing graphical user interfacehe users or automatically executing
tasks. Figure 2 depicts the system componentsaofiwwork methodology software
realization. The architectural components are:

e Ontology Editor. It is GUI for composing and instantiating the aaogies used in
the concept of the framework. Protégé tool (hippatege.stanford.edu/) is used for
this purpose.

e Ontology Importer. It is a module that manages the OWL ontologysfiemposed
by the Ontology Editor for a specific project (MAffinition). Furthermore, it
keeps versions of the ontologies for potential use.

e Code Generator is the component responsible for the transformatibthe MAS
definition to code running on top of JADE MAS platin. The Code Generator us-
es an OWL Ontology Reasoner for the conceptuatinati.e. the identification of
hierarchy and relations - of the imported ontolsgi@ENA semantic framework
(http:// jena.apache.org) with Pellet (http://claaksia.com/pellet) reasoning sup-
port is used for this purpose.

o External Module Importer is a GUI responsible follecting the external modules
(binaries or code) needed for MAS implementation.

e Packaging Manager is responsible for managing #remgted code and the im-
ported modules and creating the final applicatiadkage for compilation.

e Binary Builder is the tool that builds the final MiAsystem. Binary Builder can be
directly connected to the deployment or testingiremment in order to automati-
cally deploy the binary code.

Ontology Packaging
Reasoner Manager

A A
y

Ontology Editor

» Binary Builder

Ontology | Code Generator External Module
Importer Importer

Fig. 2. Framework Methodology Software Realization Architieal Components

33 OWL-GMO

As aforementioned, OWL-GMO is the core ontologytlud proposed framework
used to define the agents and their behavior in MOWL-GMO entities come from
the terms defined in the GAIA methodology. The ¢ody is based on two super-
classes:

o AgentSystemEntity which abstractly defines the entities used by GAiéthodolo-
gy to define a MAS.

e AbstractConcept which defines supporting entities used to definacepts of the
behavior and functionality of the MAS (data, praes APIs, etc).

According to GAIA, each agent system comprisestafagent roles. Each role is
defined by four attributes: responsibilities, pessions, activities, and protocols.
Responsibilities determine functionality and, ashsware perhaps the key attributes
associated with a role. Responsibilities are dididato two types: liveliness
properties and safety properties. In order to zealesponsibilities, a role has a set of
permissions. Permissions are the rights associatitl a role. Therefore, the
permissions of a role identify the resources thatswvailable for that role in order to
realize its responsibilities. In the kind of systéimat has been typically modeled in
this work, permissions tend to be information reses. Activities are actions
associated with the role and are carried out byatfent without interacting with other
agents. Finally, a role is also identified with @mber of protocols which define the
way that it can interact with other roles. Eachtpeol is defined by its initiator role,
the responder roles, input data, output data amgithcess executed.

Figure 3 depicts the OWL-GMO visualization. The sskas AgentRole,
RoleResponsibility, RolePermission, RoleProtocol andRoleActivity are the subclasses
of the classAgentSystemEntity and define the main entities of GAIA methodology.
For RoleResponsibility there are two subclassésyenessProperty and SafetyProperty
following GAIA specifications. These classes foliag by relationships expressing
specific concepts and restrictions (i.AgentRole accessResourcesAccordingTo
RolePermission) are used for the definition of the MAS.

FunctionMethod|

‘ some Literal
executesA

connectionUsesOperator

hasInputs

,_—-L
DataObject allowAccess

hasInputs| hasOutput’

denyAccess

onnectsTo
ExpressionSegment indicatesA | —ROleActivity |

]

startsWith actsAccordingTo accessResourceAccordingTo | ROlePermission

1

indicates. RoleProtocol |
<purpose exactly 1 Literal

asProcess
Expression ‘

interactsAccordingTo

isExpressBy| isExpressBy I

AgentSystemEntity ‘

consistsO! s
tem
Safel

nctionsAccordingTo
RoleResponsibility

ZLivenessProperty

or SafetyProperty

LivenessPEEyl

Fig. 3. OWL-GMO Ontology

Furthermore, OWL-GMO uses the subclasdeataObject, FunctionMethod,
Expression, ExpressionSegment and ExpressionOperator to express additional
concepts reading data, operations and proceBsgaObject class is used to define
the used data, usually enriched with external ogies describing the information
data used for a specific projedExpression denotes a concept that consists of
ExpressonSegments which indicate either an activity or a protocol.
ExpressionSegments are connected vi&xpressionOperator in order to compose a
flow of actions that define the activit{zunctionMethod is designed in order to be
instantiated as a method from software librarieis mapped to the external modules
API methods for executing specific business logiuctionalities.

34 MASImplementation

The outcome of the design phase is the instanti@iatl-GMO where individuals
are depicted by the agents and their functionalit®t the next step, being MAS
implementation, the relative code of the agent$ vl generated according to JADE
agent framework guidelines. In order to generatdeccsets of “transformation”
scripts are executed, which logic follows the maininciples presented by
Spanoudakis and Moraitis [9].

In order to manage the data used by the agentnsyetel depicted in the imported
ontologies extending Data Obiject, the functweateDataObjects() generates java
classes based on the heredity feature which isostgmp by both OWL and Object
oriented program languages. Tdreate literal_var() function creates a class public
property of java common data type (String, int) @ssociated to DataProperty range
type. Thecreate object var() function creates a public property of the corresiiog
java class to ObjectProperty range ontology cldasa cardinality is defined by an

array if there are multiple values. This transfotioraallows Java classes to be used
in the generated code associated with the MAS itiefin

Functi on createbDat albj ects():
foreach (OAL O ass) C
if (OW Class) Cis subclass of (OAL Cass) C1
create_java_cl ass_ext ends(C. nane, Cl. nane)
el se
create_java_cl ass(C. nane)
endi f
for each (OAL DataTypeProperty) DP of (OAL Class) C
cardinality = getPropertyCardinality(DP)
create literal _var(DP. name, C. name, cardinality)
endf or each
for each (OAL QbjectProperty) OP of (OAL Class) C
cardinality = getPropertyCardinality(OP)
creat e_obj ect _var (OP. nane, C. nane, cardi nal i ty)
endf or each
endf or each

Having generated the Java data object classesetktestep is the creation of the
agents. In JADE framework agents are realized #=nsjons ofade.core.Agent and
their tasks (activities or protocols) are implementec d\VA classes extending the
jade.core.behaviours.Behaviour class. The received / sent messages for each agent
implemented using thgade.lang.acl.ACLMessage class. FunctioncreateAgents()
depicts the code generation script for agents lagid behaviors.

Function createAgents():
foreach (AgentRol e as Agent)
creat e_Agent (Agent)
foreach (AgentActivity(Agent actsAccordi ngto)as
Activity)
Behavi our = create_Behavi our (Activity)
attach_Behavi our _t o_Agent (Behavi our, Agent)
endf or each
foreach (Rol ePerm ssi on(Agent interactsAccordingTo)as
Per m ssi on)
Dat aCbj ect = get Dat aObj ect _i sAl | owed(Rol ePer ni ssi on)
attach_Data_Obj ect _to_Agent (Dat aCbj ect, Agent)
endf or each
foreach (AgentProtocol (Agent haslnitiator |
i nteractsAccordi ngTo|| hasResponder)as Protocol)
Expr essi on = get Expressi on_hasProcess(Protocol)
attach_prot ocol _behavi our (Expr essi on, Agent)
endf or each
endf or each

For the agent protocols that are releaseattach protocol_behaviour() function,
the corresponding behaviors and ACL messages amerajed according to the
process flow defined by the related Expressioredoh transformation the input and
output data of behaviors are mapped according ¥a data objects created by the
functioncreateDataObjects().

The next step is the gathering of all the extematules/java classes and adding
them to the project classpath. The final step comitsthe compiling and building of
agent executable code that will run on top of astalled JADE platform at the
enterprise environment.

4 Conclusion

The paper presents a framework relevant to the hmgglalesign, implementation
and deployment of a MAS for the enterprise envirentrallowing the increase of its
flexibility and decision making autonomy. In thisrtext production process may be
easier and more effectively decentralized. Theedsffit software tools are presented
that make it possible to model the MAS in termsoafologies, implement it and
deploy it to the enterprise environment throughaJesde generation.

References

1. Zambonelli, F. et al.: Developing Multiagent SysterThe Gaia Methodology. ACM
Transactions on Software Engineering and Methodold@l. 12, No. 3, pp. 317-370 (
2003)

2. Akbari, O. Z.: A survey of agent-oriented softwamgineering paradigm: Towards its in-
dustrial acceptance. International Journal of Coeplihgineering Research Vol. 1(2), pp.
14 — 28 (2010)

3. Leitdo, P., Vrba, P.: Recent Developments and Fdfteads of Industrial Agents. LNCS,
vol. 6867/2011, pp. 15-28, Springer, Heidelberdl@0

4. Girardi, R., Leite, A.: A knowledge-based tool forultitagent domain engineering.
Know.-Based Syst. 21(7) , pp. 604-61 (2008)

5. Bratukhin A. and Sauter T.: Functional Analysis oiMdifacturing Execution System Dis-
tribution, IEEE Transactions on Industrial Inforieat vol. 7, no. 4, pp. 740-749 (2011)

6. Bittencourt, L.I., et al.: Modeling JADE Agents fro®AIA Methodology under the Per-
spective of Semantic Web. In: Filipe, J., Cordeir¢eds.) Enterprise Information Systems.
LNBIP, vol. 24, pp. 780-789, Springer, Heidelber§(qQ)

7. Mousavi, A., Nordin, Md, Othma, Z. A.: An Ontolpdriven, Procedural Reasoning
System-Like Agent Model, For Multi-Agent Based Ma&bilVorkforce Brokering System,
Journal of Computer Science, Vol. 6, pp. 557-563.(30

8. Nyulas,C., et al.: An Ontology-Driven Framework fdeploying JADE Agent Systems.
In: IEEE/WIC/ACM International Conference on Web lhigence and Intelligent Agent
Technology, pp. 573-577. IEEE Press, New York (2008

9. Spanoudakis, N., Moraitis, P.: Gaia Agents Implefagon through Models Transfor-
mation. In: Scerri, P.(ed.) Principles of PraciitéMulti-Agent Systems, LNCS, vol. 5925,
pp. 127-142, Springer, Heidelberg (2009)

