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Abstract. The purpose of making efficient and flexible manufacturing systems is often 

related to the possibility to analyze the system considering at the same time a 

wide number of parameters and their interactions. Simulation models are proved 

to be useful to support and drive company management in improving the 

performances of production and logistic systems. However, to achieve the 

expected results, a detailed model of the production and logistic system is needed 

as well as a structured error analysis to guarantee results reliability. The aim of 

this paper is to give some practical guide lines in order to drive the error analysis 

for discrete event stochastic simulation model that are widely used to study 

production and logistic system. 

Keywords: discrete event, simulation model, error analysis, stochastic model. 

1   Introduction 

Stochastic, discrete events, simulation models are widely used to study production 

and logistic system. Apart from the development, one of the main problem of this 

approach is to perform the error analysis on the outputs of the simulation model. 

Simulation experiments are classified as either terminating or non-terminating as far 

as the goal of the simulation is concerned (Law and Kelton,2000), (Fishman,2000). 

If we limit our interests on non-terminating simulation, the error analysis can be split 

into two different parts. The first part consists of  individuating the initial transient 

period and the confidence interval of the outputs. The second part consists of 

estimating how the transient period and the outputs confidence interval varies when 

the initial model scenario is changed. The first part of the problem is widely studied, 

Kelton (1983-1989), Schruben (1982-1983), Welch (1982), Vassilacopoulos (1989) 

White (1997), and many methods are provided to determinate the transient period 

often related to output stability, that can be quantified in different ways. Between the 

proposed techniques Mean Squared Pure Error method, Mosca et al. (1985-1992), 

should be reminded as a practical method useful to determinate both transient period  

and confidence interval. On the other hand the second part of error analysis problem 

is not commonly addressed directly as reported in the recent work of  Sandikc (2006) 
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that tries to fill the gap for the initial transient period for simulation model addressing 

production lines. The variance of outputs confidence interval  between different 

scenario is often faced with the hypothesis that it is normally distributed around a 

central value used in the reference scenario according with the basic theory of 

statistics (Box et al. 2013). But in many practical cases there is no evidences that this 

hypothesis is correct and, moreover, the significance of central value, for the 

reference scenario, is lost. In fact in some recent simulation handbook (Chung 2004) 

the advice to quantify the confidence interval for all different simulated scenario is 

given.  

2 Purpose  

The aim of this paper is to give some practical guidelines in order to drive the error 

analysis for discrete event stochastic simulation models. The paper is focused on the 

study of confidence interval variance related to the variance of simulated scenario. 

Nowadays, in many practical applications, the calculation potential is large enough to 

perform “long” simulation run in order to assure to exceed the initial transient period. 

Much more important is to determinate the confidence interval for the outputs in  

different simulated scenario, because overestimate or underestimate these confidence 

intervals can drive analysts towards a wrong interpretation of the results.   

3 Methodology 

To address the aim of the paper a quite simple discrete event simulation model is 

considered and the MSPE (1) is used to estimate outputs confidence interval. Then the 

simulation are performed according to different scenario and the variance of 

confidence interval is studied for different outputs.  

      
         

  
   

   
 
*

   (1) 

                                                                                              

This paper is grounded on a discrete events simulation model reproducing a re-order 

point logistic system, in particular a single-item fixed order quantity system also 

known as: Economic Order Quantity (EOQ) model. The economic order quantity 

(EOQ), first introduced by Harris (1913), and developed by Brown (1963) and Bather 

(1966) with stochastic demand, is a well-known and commonly used inventory 

control techniques reported in a great variety of hand book, for example: Tersine 

(1988) and Ghiani (2004).  The notation used in this paper is illustrated in table 1. 
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Table 1. Symbol and definitions 

Symbol Unit Definition 
N Day Number of days for simulation 

Di Unit/day Mean demand per day in units 

Lt Day Mean lead time in day 

Co Euro/order Single order cost in euro 

Cs Euro/ unit*year Stock cost in euro per unit per year 

SS Unit  Safety stocks in unit 

3.1 Simulation model 

The simulation model was developed according with the standard EOQ model for 

single item. A set of stochastic functions, developed in SciLab environment, are used 

to generate the demand that activates the model. The simulation model was tested 

performing standard EOQ model with normal distributed demand (where σd is 

demand standard deviation) and normal distributed lead time (where σt is lead time 

standard deviation). The parameters set used in the reference scenario are illustrated 

in table 2. 

Table 2. Used parameters set 

Parameter Set value 
Di 1.000,00 

σd  300,00 

Lt 7,00 

σt 2,00 

Co 1.000,00 

Cs 1,00 

Imposed SL 0,95 

To evaluate model performances, in terms of achieved service level, a set of  4 Key 

Performance Indicators (KPI) is defined. The used KPI are illustrated in table 3. 

Table 3. Used KPI 

KPI Unit Definition 
SL1 % 1-Number of stock-out in days per day 

SL2 % 1-Number of stock-out in units per day 

SL3 % 1-Number of stock-out in units per day during lead time 

SL4 % 1-Number of stock-out event during lead time period 
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3.2 Design of the experiments  

To investigate the influence of different parameters on confidence intervals four 

factors are considered. These four factors are: 

 Demand distribution; 

 Lead time distribution; 

 Ratio Co/Cs; 

 SS, safety stocks. 

A full factorial experiment with three levels is used in this paper. Four factors and 

three levels give 3
4
 = 81 combinations. For each combination a number of 5 

replications were conducted for a number of 405 simulations. The three settings for 

the four factors are shown in table 4.  

 

Table 4. Factors setting 

 

4 Findings 

The presented experiments are evaluated in terms of stability of the  results and 

confidence interval width for all considered KPI. The simulations are conducted for a 

length of 1.000 days and this guarantee the stability of outputs for all KPI. Initial 

transient period length varies according with different parameters set and the variance 

is more significant for certain KPI, as shown in figure 1. 

  Low (-1) Mean (0) High (+1) 

D 
Normal distribution, 

mean = 1,000 units/day, 

standard deviation = 300 

units/day 

Uniform distribution, 

minimum = 500 units/day, 

maximum = 1,500 

units/day 

Exponential 

distribution, mean = 

1,000 units/day 

Lt 
Normal distribution, 

mean = 7 day, standard 

deviation = 2 day 

Uniform distribution, 

minimum = 1day, 

maximum = 13 day 

Exponential 

distribution, mean = 7 

day 

Co/Cs 100 1.000 1.900 

SS 0 units 1.000  units 2.000  units 
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Figure.1 MSPE for KPI SL1 and SL3 

To evaluate the significance of confidence intervals the results are presented for each 

KPI as the ratio between half interval and the mean for each KPI. Confidence half 

intervals are calculated for a 95% level of significance according with (2). 

 

   
 

   

 

     

  
  

*
    (2) 

                                                                                                    

 

Table 5. ANOVA test P-value results, codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

Factors LS1 LS2 LS3 LS4 
Demand distribution 3,15E-14 *** 4,99E-14 *** 4,85E-15 *** 0,0002638 *** 

Lead time distribution < 2.2e-16 *** < 2.2e-16 *** < 2.2e-16 *** 0,3792613  

Safety Stocks 0,004364 ** 0,013121 * 0,0001933 *** 8,62E-09 *** 

Ratio Co/Cs 0,132156  0,126539  < 2.2e-16 *** 3,49E-07 *** 

Demand dist.: Lead time dist. < 2.2e-16 *** < 2.2e-16 *** 4,03E-16 *** 0,1436708  

Demand dist.: Safety Stocks 0,639589  0,952472  0,8427638  0,9926262  

Demand dist.: Ratio Co/Cs 0,016213 * 0,031195 * 0,0091386 ** 0,0912483  

Lead time dist.: Safety Stocks 0,570304  0,801933  0,0424879 * 0,2119648  

Lead time dist.: Ratio Co/Cs 0,025063 * 0,009775 ** < 2.2e-16 *** 0,1682513  

Safety Stocks: Ratio Co/Cs 0,92423  0,918936  0,9432251  0,8817591  

The ANOVA test reveals that the considered factors have different impact on 

confidence interval. Demand and lead time distribution have a very strong effects in 

comparison with the other parameters and even their interaction is important, as 

shown in in figure 2 for SL1. 
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Figure.2  Confidence half interval (min – max), in terms of  %, for SL1and SL4 

  5 Conclusions 

The case study presented here can be used to make some practical considerations to 

support error analysis for discrete event simulation models. First, a “long” simulation 

period, in order to pass the initial transient period, is relatively easy to set, even if 

different behavior have been observed for different KPI. Second, the initial transient 

period and the related confidence interval depend in a very different way by the 

considered parameters. In particular, for numeric parameters, the hypothesis that 

confidence interval variance is normal distributed around a central value calculated in 

the reference scenario is almost verified. On the other hand, when the studied 

parameters are not numerical, for example distribution type as in the considered case 

study, the confidence interval must be re-calculated in each scenario because the 

variance could be high and the interaction are almost unpredictable. So, in practice, 

the effort to check the confidence interval related to discrete event simulation should 

be done when the modified parameters are not simply numeric. This kind of analysis, 

thanks to the actual computational resource, is not prohibitive in terms of time when 

we manage a rather simple model.  

7 Limitation and further work 

The number of replications for each scenario provided in the DOE is fixed, a deeper 

study about this aspect should be investigate. 
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