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Abstract—Factorizing sparse matrices using direct multi-
frontal methods generates directed tree-shaped task graphs,
where edges represent data dependency between tasks. This
paper revisits the execution of tree-shaped task graphs using
multiple processors that share a bounded memory. A task can
only be executed if all its input and output data can fit into the
memory. The key difficulty is to manage the order of the task
executions so that we can achieve high parallelism while staying
below the memory bound. In particular, because input data of
unprocessed tasks must be kept in memory, a bad scheduling
strategy might compromise the termination of the algorithm.
In the single processor case, solutions that are guaranteed to be
below a memory bound are known. The multi-processor case
(when one tries to minimize the total completion time) has been
shown to be NP-complete. We present in this paper a novel
heuristic solution that has a low complexity and is guaranteed
to complete the tree within a given memory bound. We compare
our algorithm to state of the art strategies, and observe that
on both actual execution trees and synthetic trees, we always
perform better than these solutions, with average speedups
between 1.25 and 1.45 on actual assembly trees. Moreover, we
show that the overhead of our algorithm is negligible even on
deep trees (105), and would allow its runtime execution.
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I. INTRODUCTION

Parallel workloads are often modeled as task graphs,
where nodes represent tasks and edges represent the depen-
dencies between tasks. There is an abundant literature on
task graph scheduling when the objective is to minimize
the total completion time, or makespan. However, with
the increase of the size of the data to be processed, the
memory footprint of the application can have a dramatic
impact on the algorithm execution time, and thus needs to
be optimized. This is best exemplified with an application
which, depending on the way it is scheduled, will either fit in
the memory, or will require the use of swap mechanisms or
out-of-core. There are very few existing studies that take into
account the memory footprint when scheduling task graphs,
and even fewer of them targeting parallel systems.

In the present paper, we consider the parallel scheduling
of rooted in-trees. The vertices of the trees represent com-
putational tasks, and its edges represent the dependencies
between these tasks, which are in the form of input and
output data: each task requests for its processing all the data

produced by its children tasks to be available in memory, and
outputs a new data for its parent. We want to process the
resulting task tree on a parallel system made of p computing
units, also named processors, sharing a global memory of
limited size M . At any time, the size of all the data currently
produced but not yet consumed cannot exceed M . Our
objective is to minimize the makespan, that is, the total time
needed to process the whole task tree, under the memory
constraint.

The motivation for this work comes from numerical linear
algebra, and especially the factorization of sparse matrices
using direct multifrontal methods [1]. During the factoriza-
tion, the computations are organized as a tree workflow
called the elimination tree, and the huge size of the data
involved makes it absolutely necessary to reduce the memory
requirement of the factorization. Note that we consider
here that no numerical pivoting is performed during the
factorization, and thus that the structure of the tree, as well
as the size of the data are known before the computation
really happens.

In this paper, we mainly build on two previous results.
On the theoretical side, we have previously studied the
complexity of the bi-criteria problem which considers both
makespan minimization and peak memory minimization [2],
and we have proposed a few heuristic strategies to schedule
task trees under hard memory constraints. However, these
strategies requires strong reduction properties on the tree.
An arbitrary tree can be turned into a reduction tree, but this
increases its memory footprint, which limits the performance
of the scheduler under memory constraint. On the practical
side, Agullo et al. [3] uses a simple activation strategy to
ensure the correct termination of a multifrontal QR factor-
ization, whose task graph is an in-tree. Both approaches
have drawbacks: the first one artificially increases the peak
memory of the tree, and the second one overestimates the
memory booked to process a subtree. Our objective is to
take inspiration from both to design a better scheduling
algorithm.

Note that we are looking for a dynamic scheduling al-
gorithm, that is, a strategy that dynamically reacts to task
terminations to activate and schedule new nodes. We suppose
that only the tree structure and the data sizes are known



before the execution, not the task processing times, so that
one cannot rely on them to build a perfect static schedule.
Finally, the scheduling complexity should be kept as low as
possible, since scheduling decision need to be taken during
the computation without delaying the task executions.

Our contributions are as follows:
• We provide a novel heuristic along with a proof of its

termination for memory bounds.
• We provide data-structure optimizations to improve its

computational complexity.
• We provide a thorough experimental study, both on

actual and synthetic trees to show its dominance over
state of the art algorithms.

• We propose a new makespan lower bound for memory-
constrained parallel platforms.

The rest of the paper is organized as follows. We first
present the problem, its notation and formalize our objective
in Section II. We then review related work and the two
existing approaches listed above in Section III. Next, we
present our new scheduling algorithms, as well as the
proof of its correctness in Section IV. Then, we propose a
memory-aware makespan lower bound in Section V. Finally,
we present a set of comprehensive simulations to assess
the benefit of the new algorithm VI, before presenting
concluding remarks in Section VII

II. MODEL AND OBJECTIVES

A. Application model

Let T be a rooted in-tree (dependencies point toward the
root) composed of n nodes, the tasks, denoted by their index
1, . . . , n. A node i is characterized by its input data (one per
child), its execution data (of size ni), and its output data (of
size fi). When processing node i, all input, execution and
output data must be allocated in memory. At the termination
of node i, input and execution data are deallocated, and only
the output data stays in memory. We denote by Children(i)
the set of children of node i, which is empty is i as a leaf.
The memory needed for the processing of node i, illustrated
on Figure 1, is given by:

MemNeeded i =

 ∑
j∈Children(i)

fj

+ ni + fi. (1)

B. Platform model

We consider a shared-memory parallel platform, com-
posed of p homogeneous processors onto which each task
can be computed. Those processors share a limited memory
of size M .

C. Objectives

Our objective here is to minimize the makespan, that is
the total execution time, while keeping the size of the data
stored in memory below the bound M . This problem is a
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Figure 1. Input, execution and output data of a node i with children
j1, . . . jp and parent k.

variant of the bi-criteria problem which aims at minimizing
both the makespan and the peak memory. Note that those
two objective are antagonist: the best way to minimize the
makespan is to parallelize as much as possible without
regard to the memory used, while the best way to minimize
the peak memory used is to execute the whole schedule on
a single processor which would give the worst makespan.
In a previous study [2], we have proven that this bi-criteria
problem was NP-complete and inapproximable within con-
stants factors of both the optimal memory and the optimal
makespan. Our variant clearly inherits this complexity and
in this study, we are mainly looking for heuristic solutions.

Note that the algorithms under consideration are natural
candidates to replace the simple activation scheme of [3].
Thus, their runtime complexity is critical, as we want to
take scheduling decisions very fast. While a notable, say
quadratic, complexity is acceptable in the initial preprocess-
ing phase, we are looking for O(1) complexity at each task
termination, or eventually logarithmic.

III. RELATED WORK AND EXISTING ALGORITHMS

Memory and storage have always been a limited parameter
for large computations, as outlined by the pioneering work
of Sethi and Ullman [4] on register allocation for task
graphs. In the realm of sparse direct solvers, the problem
of scheduling a tree so as to minimize peak memory has
first been investigated by Liu [5] in the sequential case: he
proposed an algorithm to find a peak-memory minimizing
traversal of a task tree when the traversal is required to
correspond to a postorder traversal of the tree. A follow-
up study [6] presents an optimal algorithm to solve the
general problem, without the postorder constraint on the
traversal. Postorder traversals are known to be arbitrarily
worse than optimal traversals for memory minimization [7].
However, they are very natural and straightforward solutions
to this problem, as they allow to fully process one subtree
before starting a new one. Therefore, they are widely used
in sparse matrix software like MUMPS [8], [9], and achieve
good performance on actual elimination trees [7].

The problem of scheduling a task graph under memory
or storage constraints also appears in the processing of
scientific workflows whose tasks require large I/O files.



Such workflows arise in many scientific fields, such as
image processing, genomics, and geophysical simulations.
The problem of task graphs handling large data has been
identified by Ramakrishnan et al. [10] who propose some
simple heuristics. In the context of quantum chemistry
computations, Lam et al. [11] also consider task trees with
data of large size.

Note that peak memory minimization is still a crucial
question for direct solvers, as highlighted by Agullo et
al. [12], who study the effect of processor mapping on
memory consumption for multifrontal methods.

We now review the two scheduling strategies from the
literature that target our problem.

A. Simple activation heuristic

Agullo et al.[3] use a simple activation strategy to ensure
that a parallel traversal of a task tree will process the
whole tree without running out of memory. The first step
is to compute a postorder traversal, such as the memory-
minimizing traversal of [5]. This postorder traversal, denoted
by AO , will serve as an order to activate tasks. This solution
requires that the available memory M is not smaller than the
peak memory MAO of the activation order. The strategy
is summarized in Algorithm 1. The activation of a task
i consists in allocating all the memory needed for this
tasks. Then, only tasks that are both activated and whose
dependency constraints are satisfied (i.e., all predecessors in
the tree are already processed) are available for execution.
Another scheduling heuristic may be used to choose which
tasks the among available ones are executed: we denote by
EO the order giving the priority of the tasks for execution.
Note that available nodes are nodes whose children have
been completed.

This simple procedure is efficient to schedule task trees
without exceeding the available memory. However, it may
book too much memory, and thus limit the available par-
allelism in the tree. Consider for example a chain of tasks
T1 → T2 → T3. Algorithm 1 will first book n1 + f1 for
task T1, then n2 + f2 for T2 and finally n3 + f3 for T3

(assuming all this memory is available). However, no two
tasks of this chain can be scheduled simultaneously because
of their precedence order. Thus, it is not necessary to book
n1, n2 and n3 at the same time, nor is it necessary to book
memory for f1 and f3: the memory used for T1 can be later
reused for the processing of T2 and T3. By booking memory
in a very conservative way, this heuristic may prevent nodes
from other branches to be available for computation, and
thus delay the processing of these nodes.

B. Booking strategy for reduction trees

In a previous publication [2], we have proposed a novel
activation policy based on a refined memory booking strat-
egy. However, our strategy is limited to special trees, also

Algorithm 1: ACTIVATION(T, p,AO ,EO ,M)

1 MBooked ← 0
2 ACT ← ∅
3 while the whole tree is not processed do
4 Wait for an event (task finishes or t = 0)

// Free the memory booked by j

5 foreach just finished node j do
MBooked ←MBooked − nj −

∑
j∈Children(i) fj

6 continueActivation ← true
7 while continueActivation do

// Activate the first node i of AO if
possible

8 i← pop(AO)
9 if MBooked + ni + fi ≤M then

10 MBooked ←MBooked + ni + fi
11 push(i,ACT )
12 else
13 push(i,AO)
14 continueActivation ← false

// Process available nodes in ACT following
priority order EO

15 while there is an available processor Pu and there is an
available node in ACT do

16 Let i be the available node in ACT with maximal
priority in EO : Remove(i,ACT )

17 Make Pu process i

called reduction trees, who exhibit the following two prop-
erties:
• There is no execution data, i.e., ni = 0 for each node
i;

• The size of the output of each node is smaller than the
size of its inputs, that is, fi ≤

∑
j∈Children(i) fj .

Using these two properties, we are able to prove that
if the memory has been successfully booked for all the
leaves of a subtree, then all nodes in this subtree can be
processed without additional memory. Moreover, we know
how to compute the amount of booked memory that each
completing node has to transmit to its parent.

Contrarily to the previous algorithm, this complex strategy
allows to correctly predict the amount of memory that needs
to be booked for a given subtree. However, it only applies
to special trees, namely reduction trees. General trees may
be transformed into reduction trees by adding fictitious
edges. However this increases the overall peak memory
needed for any traversal, which limits its interest. We have
indeed noticed that it does not give better performance than
Algorithm 1 on general trees. Furthermore, in some cases
it makes it a key limitation for general trees with limited
memory as it does not always allow for the completion of
those trees.

IV. A DYNAMIC FAST ALGORITHM

In this section, we propose a novel algorithm, named
MEMBOOKING to schedule trees under limited memory, that



overcomes the limitations of the previous two strategies.
Similarly to Algorithm 1, we rely on the activation of
nodes, following an activation AO which is guaranteed to
complete the whole tree within the prescribed memory in the
case of a linear execution. However, activating a node does
not correspond here to booking the exact memory ni + fi
needed for this node: some of this memory will be transfered
by some of its descendant in the tree, and if needed, we
only book what is absolutely needed. The core idea of
the algorithm is the following: when a node completes its
execution, we want (i) to reuse the memory that is freed
on one of its ancestors and (ii) perform these transfers of
booked memory in an As Late As Possible (ALAP) fashion.
More precisely, the memory freed by a completed node j
will only be transfered to one of its ancestors i if (a) all the
descendants of i have enough memory to be executed (that
is, they are activated), and (b) if this memory is necessary
and cannot be obtained from another descendent of i that
will complete its execution later. Finally, an execution order
EO states which of the activated and available nodes should
be processed whenever a processor is available.

In order to keep track of all nodes, we use five states to
descrive them (a node can only be in one state), which we
present in reverse order of their use for a given node:

1) Finished (FN ): This corresponds to nodes which have
completed their execution.

2) Running (RUN ): This corresponds to nodes being
executed.

3) Activated (ACT ): This corresponds to nodes for which
we have booked enough memory (some of this memory
might be booked by some descendant in the subtree).

4) Candidate for activation (CAND): This corresponds to
nodes which are the next to be activated, that is, all
their descendant have been activated but they are not
activated yet. This is the initial state for all leaves.

5) Unprocessed (UN ): This corresponds to nodes which
have not yet been considered; it is the initial state for
all interior nodes.

Because a node can only have be in one state at a given
time, we write j ∈ UN (resp. CAND , ACT , RUN , FN )
if node j is in the corresponding state.

We now present the MEMBOOKING algorithm (Algo-
rithm 2), as well as its proof of correctness. Some opti-
mizations and data-structures used to reduce the time com-
plexity are detailed in Section IV-D and in the companion
report [13].

At the beginning of the schedule, or each time a task
completes, the MEMBOOKING algorithm performs these
three consecutive operations:

1) Memory re-allocation: DISPATCHMEMORY (Algo-
rithm 3) reallocates the memory used by a node that
just finished its execution. We present this algorithm in
Section IV-A.

Algorithm 2: MEMBOOKING(T, p,AO ,EO ,M)

// initialization of the memory
1 foreach node i do
2 Booked[i]← 0
3 BookedBySubtree[i]← −1
4 MBooked ← 0
5 UN ← T \ Leaves(T )
6 CAND ← Leaves(T )
7 ACT ← ∅

// main loop
8 while the whole tree is not processed do
9 Wait for an event (task finishes or t = 0)

10 foreach just finished node j do
11 DISPATCHMEMORY(j)

12 UPDATECAND -ACT (CAND ,ACT )
13 while there is an available processor Pu and ACT 6= ∅

do
14 Let i be the available node in ACT with maximal

priority in EO : Remove(i,ACT )
15 Make Pu process i

Available nodes are nodes whose children have been completed.

2) Node activation: UPDATECAND -ACT (Algorithm 4)
allocates the available memory following the activation
order AO . We present this algorithm in Section IV-B.

3) Node scheduling: the schedule is done following the
execution order EO amongst the nodes that are both
activated and ready to be executed.

Note that while AO is a topological order, we do not have
any constraint on EO .

To be able to keep track of the memory allocated to each
node, we use two arrays of data that are updated during the
computation, namely:
• Booked[1..n], which contains the memory that is cur-

rently booked in order to process nodes 1 to n. We
further call MBooked =

∑
i Booked[i];

• BookedBySubtree[1..n], which sums the memory that
is currently booked by the subtree rooted in i ∈
{1, . . . , n}.

A. Memory re-allocation

When a node finishes its computation, the memory that
was used during its computation can be allocated to other
nodes. Our memory allocation works in two steps:

1) First we free the memory that was used by the node
that has just finished its execution. Note that we cannot
free all the memory: if the node that finished is not the
root of the tree, then its output needs to be saved. In
that case we allocate this memory to its parent.

2) Then we allocate the memory freed to its ancestors in
ACT following an As Late As Possible strategy (mean-
ing that if there is already enough memory booked in
the unfinished part of the subtree, we do not allocate



it to the root of the subtree but keep it for later use).
We thus compute the contribution Ci,j of a terminated
node j to its parent i as the difference between what
is needed by node i and what can be provided later by
its subtree.

Algorithm 3: DISPATCHMEMORY(j)

/* First we free the memory used by j */
1 B = Booked[j]

2


Booked[j] ← 0

MBooked ←MBooked −B

BookedBySubtree[j]← BookedBySubtree[j]−B

3 i← parent(j)
4 if i 6= NULL then

5


Booked[i] ← Booked[i] + fj
MBooked ←MBooked + fj
BookedBySubtree[i]← BookedBySubtree[i] + fj

6 B = B − fj

/* Then we dispatch the memory used by j
between its ancestors which are in ACT, if
it is neccessary */

7 while i 6= NULL and i ∈ ACT ∪ RUN and B 6= 0 do
8 Cj,i =

max(0,MemNeeded i − (BookedBySubtree[i]−B))

9


Booked[i] ← Booked[i] + Cj,i

MBooked ←MBooked + Cj,i

BookedBySubtree[i]← BookedBySubtree[i]

−(B − Cj,i)
10 B = B − Cj,i

11 i← parent(i)

B. Node activation

Our second algorithm, UPDATECAND -ACT , updates
both ACT and CAND . The key point of this sub-algorithm
is that it is conceived such that nodes are activated following
the AO order. We formally show this result in the companion
report [13].

C. Proof of correctness

In this section, we show that the implementation of this
algorithm will guarantee a correct execution if the memory
bound is large enough. Namely, we show the following
result:

Theorem 1. If T can be executed with a memory bound of
M0 using the sequential schedule AO , then for all M ≥
M0, for all p and EO , MEMBOOKING(T, p,AO ,EO ,M)
processes T entirely.

Note that because of space limitations, we only draft the
proof here. The full proof (along with intermediary results)
is available in the companion report [13].

To prove Theorem 1, we need to verify that the following
conditions are respected:

Algorithm 4: UPDATECAND -ACT (CAND ,ACT )

1 WaitForMoreMem ← false
2 while !(WaitForMoreMem) and CAND 6= ∅ do
3 Let i be the node of CAND with maximal priority in

AO

4 MissMemi = max
(
0,MemNeeded i−(

Booked[i] +
∑

j∈Children(i) BookedBySubtree[j]
))

5 if MBooked +MissMemi ≤M then

6


Booked[i] ← Booked[i] +MissMemi

MBooked ←MBooked +MissMemi

BookedBySubtree[i]← Booked[i]+∑
j∈Children(i) BookedBySubtree[j]

7 remove(i,CAND); insert(i,ACT )
8 if ∀j ∈ Children(parent(i)), j /∈ UN ∪ CAND

then
9 remove(parent(i),UN );

insert(parent(i),CAND)

10 else
11 WaitForMoreMem ← true

1) The memory used never exceed the limit M ;
2) Each running task has enough memory to run;
3) No data is lost, that is, a result that was computed will

not be overwritten until it has been used;
4) All tasks are executed.

To prove items 1, 2 and 3, we use Booked[1..n] introduced
earlier as a memory counter. We first show that no node
i will use at anytime more than Booked[i] memory slots
for its execution or input storage. We then can show that at
all time

∑
i Booked[i] ≤M which guarantees that we never

use more memory than what we need. Furthermore, we show
that if a task i ∈ RUN , then Booked[i] = MemNeeded i.
This guarantees that a task always has enough memory
available to run. Furthermore, to be sure that we never erase
important information, we show that unless a task is moved
to FN , Booked[i] is never decreased, and increases by the
sufficient amount when an input of i is created.

Item 4 is proved by contradiction: we show that if not all
tasks are executed, then there exists a time t where RUN =
∅. Then we show that at that time, necessarily there exists a
task in ACT such that (i) all its children are in FN , and (ii)
that has enough memory booked to be able to be executed.
Hence this task could be moved to RUN , contradicting the
property that RUN = ∅.

D. Complexity analysis

In this section we give a complexity analysis of the
algorithm presented in the previous section. We have chosen
to separate the idea of the main algorithm (Section IV)
from the optimizations presented here and used to lower the
execution cost so that the original algorithm is more under-
standable. A complete version of algorithm MEMBOOKING



with structural optimizations is available in the companion
report [13].

Theorem 2. Let T a tree with n nodes, and H
be its height, AO an activation order, EO an ex-
ecution order, M a memory bound and p proces-
sors, then MEMBOOKING(T, p,AO ,EO ,M) runs in
O (n(H + log n)).

Proof: First let us define some data structures that
we use and update during the execution to reach this time
complexity.

First we introduce some informative arrays:
• one that keeps track of the number of children of each

nodes that are still in UN or CAND ;
• another one that keeps track of the number of children

of each nodes that are not finished;
• another one that keeps track of nodes not in UN ∪
CAND .

These arrays are updated during the execution of the algo-
rithm. The total time complexity of updating each of them
throughout execution is O(n).

We now introduce the main structures used in the com-
putation:
• We implement CAND as a heap whose elements

are sorted according to the activation order (AO).
All elements are inserted and removed (with com-
plexity O(log n)) at most once from CAND , hence
a time complexity of O(n log n). Furthermore, in
UPDATECAND -ACT , extracting i from CAND (on
line 3) is done in constant time.

• We use a data structure ACTf to remember the subset
of ACT such that all its elements children have finished
their execution. This is implemented as a heap whose
elements are sorted according to the activation order
(EO). We show in [13] how to update this structure
throughout the execution. All elements are inserted
and removed at most once from ACTf , hence the
time complexity of elements going through ACTf is
O(n log n). Finally, in MEMBOOKING, extracting i
from ACTf (line 14) is done in constant time.

We review in details all operations performed by MEM-
BOOKING:
• DISPATCHMEMORY is called exactly once per node

(every time a node finishes). For a given node j of
depth hj , it does at most O(hj) operations (the test
i ∈ ACT∪RUN on line 7 can now be done in constant
time with the arrays define above), which gives a total
cumulative time complexity of O(nH).

• UPDATECAND -ACT is called for each event. Note
that we have already accounted for removing or insert-
ing all elements from the different sets. Finding the
element to remove from CAND on line 3 is done
in constant time because CAND is a heap sorted

according to AO . Similarly, the test on line 8 can now
be done in constant time.
The most time consuming event is the computation
of MissMemi on line 4 which could be computed
up to O(n) times for a given node if the condition
on MBooked and M on line 5 is not satisfied (hence
giving a time complexity of O(n2)). To avoid this
case, we simply make sure that we can compute
BookedBySubtree[i] and keep the information to avoid
recomputation. Details on this are available in [13].

• Finally, the last “while” loop of MEMBOOKING
(line 13) is entered once per element contained in ACT ,
that is exactly n times. Furthermore, because ACTf is a
heap sorted according to EO , removing one element is
done in O(log n), which gives a cumulative complexity
of O(n log n) for this last loop.

Finally accounting for all operations, the total time com-
plexity of this optimized algorithm is O(n(log(n) + H)).

V. NEW MAKESPAN LOWER BOUND

It is usual in scheduling problems to compare the
makespan of proposed algorithms to lower bounds, as the
optimal makespan is usually out of reach (NP-complete).
The classical lower bound for scheduling task graphs con-
siders the maximum between the average workload (total
computation time divided by the number of processors) and
the longest path in the graph. In a memory-constrained
environnement, the memory bound itself may prevent the
simultaneous execution of too many tasks. We propose here
a new lower bound that takes this into account.

Theorem 3. Let Cmax be the makespan of any correct
schedule of a tree whose peak memory is at most the memory
bound M , and ti the processing time of task i. Then

Cmax ≥
1

M

∑
i

MemNeeded i × ti.

Proof: Consider a task i as described in the model
of Section II: its processing requires a memory of
MemNeeded i (see Equation (1)). As stated in the theorem,
we denote by ti its processing time. Consider the total
memory usage of a schedule, that is, the sum over all time
instants t of the memory used by this schedule. Then, task i
contributes to at least MemNeeded i×ti to this total memory
usage. For a schedule of makespan Cmax, the total memory
usage cannot be larger than Cmax × M , where M is the
memory bound. Thus,

∑
i MemNeeded i × ti ≤ Cmax ×M

which concludes the proof.
We have noticed in the simulations described in the next

section that with eight processors, this new lower bound
improved the classical lower bound in 22% of the case for on
actual assembly trees, and in these cases the average increase
in the bound was 46%. For the simulations on synthetic trees,



it has improved the lower bound in 33% of the cases, with
an average improvement of 37%. Contrarily to the previous
lower bound, this new lower bound does not depend on the
number of processors, hence the improvement is even greater
with more processors.

It is important to understand that the more precise the
lower bound, the more information is available for a possible
improvement of the considered heuristics.

VI. SIMULATIONS

We report here the results of the simulations that
we performed to compare our new booking strategy
(MEMBOOKING) to the two other scheduling heuristics
presented above: the basic ACTIVATION policy [3] pre-
sented in Section III-A and the booking strategy [2] for
reduction trees, denoted MEMBOOKINGREDTREE, from
Section III-B. In the latter, the tree is first transformed into
a “reduction tree” [2] by adding some fictitious nodes and
edges before the scheduling strategy can be applied.

A. Data sets

The trees used for the simulations come from two data
sets, which we briefly describe below.

The first data set, also called assembly trees are trees
corresponding to the multifrontal direct factorization of a set
of sparse matrices obtained from the University of Florida
Sparse Matrix Collection (http://www.cise.ufl.edu/research/
sparse/matrices/). This data sets is taken from [2], where
more information can be found on multifrontal factorization
and on how the trees are constructed. This data sets consists
in 608 trees which contains from 2,000 to 1,000,000 nodes.
Their height ranges from 12 to 70,000 and their maximum
degree ranges from 2 to 175,000.

The second data set is synthetic. The node degree is taken
randomly in [1; 5], with a higher probability for small values
to avoid very large and short trees, on which we already
observed with the previous data set that our algorithm out-
performs other strategies. Edges weights follow a truncated
exponential distribution of parameter 1. The size of a node
is 10% of its outgoing edge weight and it processing time is
proportional to its outgoing edge degree. We generated 50
synthetic trees of 1.000, 10.000 and 100.000 nodes, which
results in trees of respective average height of 63, 95 and
131. More details on the data set can be found in [13].

B. Simulation setup

All three strategies were implemented in C, with special
care to avoid complexity issues. These strategies have been
applied to the two tree families described above, with the
following parameters:
• We tested 5 different number of processors

(2,4,8,16,32). The results were quite similar, expect for
the extreme case (too large or too small parallelism),
so we report here only the results for 8 processors.

Results for other numbers of processors are available
in the companion research report [13].

• For each tree, we first computed the post-order traversal
that minimizes the peak memory. This gives the min-
imum amount of memory needed for both ACTIVA-
TION and MEMBOOKING (MEMBOOKINGREDTREE
is likely to use more memory as it works on a trans-
formed tree). The heuristics are then tested with a
factor of this minimal memory, which we call below
normalized memory bound. We only plot an average
result when a given strategy was able to schedule at
least 95% of the trees within the memory bound.

• The previous post-order was used as input for both
the activation order AO and the execution order EO
for ACTIVATION and MEMBOOKING. We also tested
other order for activation and execution, such as other
postorders, critical path ordering, or even optimal (non-
postorder) ordering for peak memory [6]. As we will
detail later, this only results in slightly noticeable
change in performance.

During the simulations of the parallel executions, we re-
ported the makespan (total completion time), which is nor-
malized by the maximum of the classical lower bound and
our new memory related lower bound (see Section V). We
also reported the peak memory of the resulting schedules,
as well as the time needed to compute the schedule. This
scheduling time does not include the computation of the ac-
tivation or execution order, which may be done beforehand.

C. Results on the assembly trees
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Figure 2. Makespan of assembly trees with all heuristics depending on
the memory bound

Figure 2 plots the average normalized makespan of all
strategies on various memory constraints. We notice that for
a memory bound twice the minimum memory, MEMBOOK-
ING is 1.4 faster than ACTIVATION on average. However,
even this particular speedup spans a wide interval (between



1 and 6) due to the large heterogeneity of the assembly
trees. Note that the two heuristics from the literature give
very similar results: this is explained by the fact that
MEMBOOKINGREDTREE first transforms the trees before
applying a smart booking strategy: on these trees, adding
fictitious edges has the same effect than booking to much
memory (as ACTIVATION does) and hinders the benefit of
the booking strategy. We also note that MEMBOOKING is
able to take advantage of very scarce memory conditions: as
soon as the available memory increases from its minimum
value, its makespan drops and reaches only 10% above
the lower bound for 3x the minimum memory, leaving
very little room to hope for better algorithms. This is also
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Figure 3. Fraction of memory used by all heuristics on assembly trees
(same legend as Figure 2)

illustrated by Figure 3, which plots the real use of the
memory by the heuristics: while ACTIVATION and MEM-
BOOKINGREDTREE are very conservative, MEMBOOKING
is able to use larger fraction of the available memory when
it is limited.

Changing the activation or execution order: On Figure 4,
we present the average makespan of the ACTIVATION heuris-
tic for various activation and execution order. This figure is
similar to Figure 2 for the other scheduling heuristics. The
activation and execution order used are the following:
• memPO (memory PostOrder): the sequential postorder

traversal that minimizes the peak memory (NB: this is
the order chosen activation and execution order of both
ACTIVATION and MEMBOOKING in all other plots of
this section);

• CP (Critical Path): nodes orders by decreasing bottom-
level;

• OptSeq (Optimal Sequential): the sequential (non pos-
torder) traversal that minimizes the peak memory, com-
puted as in [6];

• perfPO (performance PostOrder): another postorder
traversal, designed for parallel performance (subtrees
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Figure 4. Makespan of assembly trees for the proposed MEMBOOKING
strategy using different activation and execution order. The bottom plot
corresponds to a zoom on the part where the memory is less limited.

with larger critical path are scheduled first, which, in a
parallel execution, is supposed to give higher priority
to nodes with large critical path).

We notice that the results of using different orders for
activation and/or execution slightly change the results: using
CP as an execution order always gives a small but noticeable
improvement over the other strategies. On the contrary, the
choice of the activation order has little effect on the final
makespan. The same effects can be seen on ACTIVATION
(when changing the activation/execution orders) and MEM-
BOOKING (when changing its priority order). However, the
gap between the performance of different orders is much
smaller than the gap of using different scheduling strategy:



changing the activation/execution order does not change the
ranking of the scheduling policies
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Figure 5. Running times of the heuristics on assembly trees (same legend
as Figure 2)

Discussion on execution time: From the complexity analy-
sis (Section IV-D) we expect our algorithm to add significant
overhead when trees are very deep (nH term of the worst-
case complexity). We first study the cumulative running time
in Figure 5 of the various strategy as a function of the
number of nodes in the trees. All strategies have similar
running times, except on a subset of trees for which our
heuristic is much slower (≈ 10s). We verify that those
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Figure 6. Running times of the heuristics on assembly trees (same legend
as Figure 2)

running times indeed depend on the height of the tree
in Figure 6. Another noticeable fact from this figure is
that overall the average overhead for each node remains
negligible (below 1ms per node with height H = 105!).

As future work, it may be interesting to get rid of this
height factor in the complexity of the algorithm especially
for cases when H = O(n).
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Figure 7. Speedup of MEMBOOKING compared to ACTIVATION on
assembly trees when the normalized memory bound is 2 for all 608 trees.

To give some hindsight on the importance of this factor,
we decided to study the speedup of MEMBOOKING com-
pared to that of ACTIVATION as a function of the tree height.
In particular, one can see from the correlations between
Figures 5 and 6 that the trees of large height are trees
where H = O(n). We report these results in Figure 7
where we show the relation between achievable speedup
and tree height: very deep trees usually correspond to thin
ones and do not provide big opportunities for increasing the
parallelism. This is why our strategy achieves best speedups
on shallow trees. With this in mind, an interesting study
would be to derive a good measure on trees which may
hint whether the use of a sophisticated strategy such as
MEMBOOKING is needed. Finding such a good measure
would need a particular research effort and is out of scope
of this paper.

D. Results on the synthetic trees

The simulations on synthetic trees show the same general
trends as what we notices on assembly trees, and thus we
only review briefly their results.

Figure 8 shows that MEMBOOKING is once again able
to schedule trees faster in a memory-constrained environ-
nement. Synthetic trees are more regular and homogeneous
that assembly trees, so that the speedup of MEMBOOKING
over ACTIVATION is more regular. It reaches an average 1.3
when the memory is twice the bound.

Finally, the scheduling time of all strategies is always
below 0.1 seconds due to the smaller height of the trees.
Note that MEMBOOKINGREDTREE is not able to schedule
most trees in a very constrained memory environment: when
the memory bound is smaller that 1.4 times the minimum
memory peak of a sequential postorder processing, MEM-
BOOKINGREDTREE is unable to schedule 33% of the trees
(or more) and thus is not included in the plot.
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VII. CONCLUSION

In this paper, we have proposed a novel algorithm for
scheduling task trees on computing platforms with bounded
shared memory. The proposed algorithm carefully allocates
memory to activated nodes, and accurately predicts how
much memory can be recycled from the processing of a
node’s ancestors. We have shown that it is always able
to schedule a tree under an admissible memory bound,
and that its complexity is sufficiently small to allow its
implementation in actual runtime schedulers. By performing
simulations on both actual assembly trees of sparse direct
multifrontal solvers and on a broader class of synthetic trees,
we have proved that it outperforms its two competitors from
the literature, especially when memory is a scarce resource.
Incidentally, we have proposed a new makespan lower bound
that takes into account a bound on the shared memory,
which, to the best of our knowledge, is the first of its kind.

This study is the first step in the design of realistic
schedulers for task trees handling large data, such as as-
sembly trees. One major extension would be to consider
parallel tasks rather than only sequential ones. To this goal,
one would need to make several adaptations to cope with
the extra memory needed for a parallel processing, and to
solve the unavoidable trade-off between allocating many
processors to big tasks (and losing on tree parallelism)
and allocating many tasks in parallel (and threatening the
memory bound). Nevertheless, we are confident that the
algorithm presented in this paper (or its adaptation) would
still provide an improvement over the classical ACTIVATION
algorithm. Another necessary extension would be to consider
distributed memories, or even a mix of distributed/shared
memory (as in clusters of cores sharing a dedicated mem-
ory).
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