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Abstract: The significant increase of the hardware complexity that occurred in the last few
years led the high performance community to design many scientific libraries according to a task-
based parallelization. The modeling of the performance of the individual tasks (or kernels) they are
composed of is crucial for facing multiple challenges as diverse as performing accurate performance
predictions, designing robust scheduling algorithms, tuning the applications, etc. Fine-grain mod-
eling such as emulation and cycle-accurate simulation may lead to very accurate results. However,
not only their high cost may be prohibitive but they furthermore require a high fidelity modeling
of the processor, which makes them hard to deploy in practice. In this paper, we propose an al-
ternative coarse-grain, empirical methodology oblivious to both the target code and the hardware
architecture, which leads to robust and accurate timing predictions. We illustrate our approach
with a task-based Fast Multipole Method (FMM) algorithm, whose kernels are highly irregular,
implemented in the ScalFMM library on top of the StarPU task-based runtime system and the
SimGrid simulator.
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Modélisation de noyaux irréguliers pour des
codes a base de taches : illustration avec la
méthode des multipoles rapide

Résumé : L’augmentation significative de la complexité matérielle qui s’est
produite ces quelques dernieres années a amené la communauté de calcul haute
performance a mettre au point de nombreuses bibliotheques scientifiques sur le
principe d’une parallélisation & base de taches. La modélisation de la perfor-
mance des taches individuelles (ou noyaux) qui les composent est cruciale pour
faire face aux multiples challenges aussi variés que la réalisation de prédictions
de performance précises, la mise au point d’algorithmes d’ordonnancement ro-
bustes, 'optimisation des applications, etc. La modélisation a grain fin telle que
I’émulation et la simulation a la précision du cycle peut donner des résultats
treés précis. Toutefois, non seulement leur cout élevé peut étre prohibitif mais
elles requierent de surcroit une modélisation tres fidele du processeur, ce qui
les rend difficiles a déployer en pratique. Dans ce papier, nous proposons une
méthodologie alternative, & plus gros grain, empirique, transparente a la fois
pour le code et l'architecture cibles, ce qui permet des prédictions robustes
et précises. Nous illustrons notre approche avec une méthode multipolaire
rapide (FMM) a base de taches, dont les noyaux sont hautement irréguliers,
implémentée dans la librairies ScalFMM au-dessus du moteur d’exécution
StarPU et du simulateur SimGrid.

Mots-clés : Logiciels mathématiques, simulation et modélisation,
méthodologie pour le calcul parallele, méthode des multipoles rapide, program-
mation a base de taches, moteur d’exécution
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1 Introduction

The emergence of more and more complex and versatile hardware architectures
led the High Performance Computing (HPC) community to use relatively high
level programming paradigms for designing scientific libraries. Task-based pro-
gramming is certainly one of the most popular of these approaches. Not only
many robust fully-featured task-based runtime systems [I5} [6] B4] are now avail-
able to support it but the introduction of the depend clause in the revision 4.0
of the OpenMP standard now allows for its adoption by a broader audience.

Task-based programming requires an algorithm to be cast into individual,
well identified pieces, called tasks (or kernels). This requirement may be viewed
as a constraint when programming a complex numerical method. On the other
hand, it ensures a clear separation of concerns, which can be exploited to al-
low the programmer to focus on designing advanced numerical algorithms while
delegating the orchestration of the execution of the tasks to a runtime system
relying on generic but sophisticated scheduling policies [32]. This separation of
concerns is also a key factor for ensuring fast and accurate performance pre-
dictions. While timing of the regular algorithms such as dense linear algebra
factorizations can be predicted transparently for the developer of the numerical
algorithm [30], it may be much harder in the case of irregular algorithms. In-
deed, such algorithms may rely on tasks with highly irregular workloads whose
modeling is extremely complex. For instance, [29] showed that a sparse direct
method requires a deep understanding of the parameterisation of the numerical
algorithm to achieve faithful timing predictions. The employed methodology for
successfully achieving this objective required the programmer to be an expert
of both the considered numerical methods (a special sparse direct factorization,
namely the multifrontal QR factorization) and statistical analysis.

In the present article, on the contrary, we propose to extend the separation
of concerns enabled with task-based programming so that the modeling of the
individual tasks becomes an assignment well distinct from the design of the
numerical algorithm itself. While this exercise cannot be fully transparent, we
propose a procedure that aims at being as much automatic as possible, yet
requiring the programmer of the numerical algorithm to explicitly provide all
parameters impacting the behavior of the task. From this list of parameters,
a model of the task is then computed, relying on standard, multiple linear
regression techniques. Anticipating the full list of relevant parameters is often
a non trivial duty when dealing with irregular kernels, even for specialists of a
numerical method. This is why the procedure we propose not only automatically
models the behavior of the tasks but also provides an assessment of the relevance
of the provided parameterisation. The programmer may then decide to enrich
the list of parameters and trigger a new statistical analysis until the model is
considered accurate enough. We illustrate our discussion with a highly irregular
kernel, namely the Multipole to Local (M2L) operator arising from the Fast
Multipole Methods (FMM) algorithm.

The rest of the paper is organised as follows. Section?| presents related
work on modeling irregular kernels, both in a general context and in the special
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context of task-based programming considered in the present study where a
kernel can be canonically associated with a task. Section3d] presents the FMM
and more particularly the irregular M2L kernel used to illustrate our discussion.
Sectionfd] presents the methodology we propose to model such irregular kernels.
We assess our methodology with the overall performance prediction of the FMM
and all of its kernels in Section[5| before concluding (Sectior[f).

2 Related work

Modeling computational kernels is one of the major challenges of HPC. Not
only is it critical for understanding the behavior of the developed numerical al-
gorithms on current machines, but it is also necessary for anticipating the trends
on future machines (and possibly for adapting their design according to these
anticipations). It furthermore plays a major practical role in the design of mod-
ern software stacks, for instance for the design of generic advanced scheduling
policies or robust auto-tuning schemes. The notion of computational kernel is
itself very much context-dependent, the separation between two kernels being
arbitrary in general. When the bounds of a kernel are not explicitly specified by
the programmer within his code, some default strategies may be employed. For
example, in a distributed memory code relying on the Message Passing Interface
(MPT) [17], & kernel may be implicitly defined as a portion of code between two
consecutive MPI calls. On the contrary, in the specific context of task-based
programming, a kernel can be canonically associated with a task. We present an
overview of general techniques employed for modeling kernels in general and in
the specific case of task-based programming in sectiond2.1] and2.2] respectively.

2.1 Modeling kernels in a generic context

Authors of scientific HPC libraries and applications usually have a deep under-
standing of the algorithms they design and of the kernels they are composed
of. When optimizing their code, they often first derive basic metrics such as
the rough number of operations and volume of communication induced by the
variants they consider. Such an analytical modeling is thus certainly the most
common (and actually almost systematic) approach used in HPC domain. Dif-
ferent levels of analytical models may be considered depending on the objective.
In some cases, relatively trivial models may be sufficient. For instance, the very
basic roofline model has been used for predicting the respective behavior of
FMM and other prominent algorithms on future machines in [7]. [13] proposed
more advanced analytical modeling of the FMM for tuning their performance on
heterogeneous architectures. While this analytical procedure may be extremely
relevant in some contexts, it may lack of accuracy when aiming at predicting the
performance of non trivial kernels on modern, complex hardware architectures.

For this reason, coarse-grain simulators such as BigSim [35] or SimGrid [12]
have emerged. The complex kernels are abstracted with simple models based
purely on the analysis of the benchmarks or of the full application executions,
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on the real machine. The derived models are then possibly fine-tuned with few
empirically measured coefficients. Even though much better control of the bias
is provided, the accuracy loss due to modeling approximations is still hard to
evaluate. Additionally, finding the right level of abstraction is often not trivial.

To obtain even more realistic models, many researchers use emulators and
cycle-accurate simulators [8, 23, 25]. This method is considered to provide
the most faithful predictions as it simulates the execution of every instruction.
However, these executions can be up to 1 million times slower than the original
running time [20] of the code, which makes this approach limited, especially for
the large irregular kernels. In such a case, due to the prohibitive costs of the
required exhaustive studies, researchers tend to rely on various interpolation and
extrapolation techniques to construct their models, which may bring unwanted
bias [33].

There is a whole spectrum of solutions in between these major approaches.
Structural Simulation Toolkit [27] is a highly modular framework that provides
both coarse-grain and fine-grain models, allowing users to find a good trace-off.
An interesting approach is proposed in the PMaC framework [28], where kernels
are characterized with certain performance parameters such as the number of
floating-point instructions, number of memory accesses, cache miss rates, etc.
This code signature is later convoluted with the description of the machine to
obtain the overall kernel performance prediction.

2.2 Modeling kernels (or tasks) in a task-based context

The high degree of separation of concerns brought by task-based paradigms
can be exploited for refining kernel modeling. The main reason is that ker-
nels may be canonically associated with tasks, which are explicitly defined and
parameterized by the programmer. This information can help improving the
procedures discussed in Sectio Not only the (hard) problem of defining
relevant boundaries of a kernel has necessarily been thoroughly considered by
the programmer when he turned his algorithms into a task-based scheme, but
a list of relevant parameters must have also been defined and exposed.

In the case of regular algorithms, the list of the parameters directly exposed
by the programmer is generally sufficient for characterizing the behavior of the
algorithm. For instance, in the case of dense linear algebra, modern tile algo-
rithms [II] rely on kernels that depend solely on a single parameter, the tile
size. They can then be simply modeled with a coarse-grain approach as follows.
The task associated with the considered kernel is benchmarked with a fixed tile
size, followed by an extraction of the distribution or of a simple mean value
from all the observations. Since the optimal tile size is often well known for
every type of processing unit, there is a need for only few different models. This
simple history-based approach is often robust enough to capture the behavior of
regular kernels. Still, in a multicore context, concurrency may remain very chal-
lenging to handle as significant performance degradation can occur if multiple
kernels are executed in parallel (e.g., for CPUs with shared cache memories).
There have been several independent works on modeling kernels used in tile al-
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gorithms in that context, namely [26] on top of the OmpSs [15] runtime system,
[30] for StarPU [6] and [18] for the OmpSs, StarPU and QUARK [34] runtime
systems.

When kernels have more irregular workloads, such as in sparse linear solvers
or FMM, the amount of work that has to be performed by a kernel may strongly
vary from one kernel execution to another. Furthermore, this amount may be
dependent on symbolic structures (structure of a sparse matrix, distribution
of particles, etc.) that are often not directly exposed by the programmer as
quantifiable data. Therefore, there is a two-fold challenge for capturing the
irregularity of the kernel in its modeling. First, a strategy must be decided
for dealing with the variability of the data the kernel operates on. Second,
it may be necessary to provide extra quantifiable parameters to better han-
dle the impact of the symbolic structure of the data on performance. [14]
modeled the SuperLU [19] sparse direct solver. It implements a supernodal
method, which can be cast into a sequence of dense operations with variable
input sizes. Although SuperLU does not rely on a generic runtime system, it is
implemented as a sequence of tasks consisting of dense operations and handled
with an internal scheduler. To deal with the variability of the input parameters,
the authors proposed a hybrid approach consisting of a baseline history-based
scheme extended with a simple interpolation mechanism. Some data are accu-
mulated during preliminary benchmarks on a collection of matrices for setting
up the history. When a new matrix is processed and a kernel with new input
values is called, the estimation is computed via a linear interpolation. Although
modeling a sparse linear solver, the supernodal method considered in [T4] was
composed of dense kernels. When the kernels furthermore depend themselves
on symbolic data, their modeling may be much harder. For instance, the kernels
of the multifrontal QR factorization of the task-based qr-mumps solver [10} 5]
deal with irregular staircase structures. In [29], the authors had to expose extra-
parameters to accurately account for the number of operations involved in those
complex, internal data structures.

3 Task-based FMM with an emphasis on the
M2L operator

Originally introduced in [I6], the FMM is considered as one of the top ten
algorithms of the twentieth century [31]. A wide range of applications, such
as molecular dynamic, astrophysics, vertex method, boundary element method
(BEM) or radial basis functions, is now accelerated by the FMM. The main
idea consists of reducing the quadratic complexity of pair-wise interactions to a
linear or a linearithmic one by performing a hierarchical decomposition of the
space into so-called cells (hierarchical subdivisions of the space) and applying
a tree-based algorithm on that hierarchical space decomposition. Each node in
that tree represents a cell of the space, the root node of the tree being the whole
space while children nodes recursively represent spatial subdivisions. Recent
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studies [21] 4] have proposed to design the FMM as a task-based algorithm in
order to exploit modern architectures.

The goal of this section is to illustrate how task parameters impact the be-
havior of the corresponding FMM tasks due to the inherent irregular nature
of the algorithm. Parameters may either be direct when they are immediately
known or indirect when assessing them requires extra processing. In this section
we show that irregular algorithms such as the FMM are inherently composed of
irregular tasks that direct parameters may not be sufficient to fully characterize.
We illustrate our discussion with a key task of the FMM involved for comput-
ing long distance interactions (namely, the M2L task), showing that all three
direct parameters of that task (the level TreeLevel in the tree, the number of
cells NbCells involved in the task and the IntervalSize grouping parameter)
fail to model its computational complexity when considering an unstructured
test case. We introduce an extra indirect parameter, the number of interactions
Nbinteractions between cells involved the task, and show that the evaluation
of this parameter may be required to obtain a fine modeling of the task. Read-
ers only interested in the modeling of irregular kernels of task-based
codes (and not particularly in FMM) may proceed to Section [4| with
this background in mind. The rest of this section is dedicated to illustrate
that on a particular example. For that purpose, we further introduce the FMM
algorithm (Section and M2L operator (Section . After a brief review
of task-based FMM (Section [3.3]), we then explain how M2L operator can be
designed as a task (Section and finally we show how the aforementioned
direct and indirect parameters impact the computation of the task.

3.1 FMM Algorithm
We consider the use of the FMM to compute the electrostatic field

3 @g; (Ti —Tj)
E = — 1
! < dmeo |z; — 253 (1)

J#

of N particles z; with charge g;.

The key-point of the FMM algorithm is to approximate the far-field — the
interactions between far particles — while maintaining the desired accuracy, ex-
ploiting the property that the underlying mathematical kernel decays with the
distance between particles. The interactions between close particles are still
computed with a direct particle-to-particle (P2P) method, but the far-field is
processed with the following algorithm. A recursive subdivision of the space
is performed in a pre-processing symbolic step (see Figure [1)). This recursive
subdivision is usually represented with a hierarchical tree data structure, and
we call the height h of the tree the number of recursions. The name of the
tree is related to the dimension of the problem, but in the current study we
use the term octree to refer to the FMM tree for any dimension. Figure (1} is
an example of an octree with an explicit correspondence between the spatial
decomposition and the data structure and we see that each cell represents its
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Figure 1: 2D space decomposition (Quadtree). Grid view and hierarchical view.

descendants composed of its children and sub-children. The multipole (M) of
a given cell represents an approximation of the charge of its descendants. On
the other hand, the local part (L) of a cell ¢ represents the potential field due
to all cells well-separated of cell ¢ that will be applied to the descendants of
c. Relying on those recursive data structures, the FMM algorithm proceeds as
follows (see Figure [2)).

Upward Pass/P2M M2M Transfer Pass/M2L Downward Pass/L2L L2P

Figure 2: Different steps of the FMM algorithm; upward pass (left), transfer
pass and direct step (center), and downward pass (right).

In an upward pass of the FMM, the physical values of the particles are aggre-
gated from bottom to top using the Particle-to-Multipole (P2M) and Multipole-
to-Multipole (M2M) operators. After this operation, each cell hosts the contri-
butions of its descendants. In the transfer pass, the Multipole-to-Local (M2L)
operator is applied between each cell and its corresponding interaction list at
all levels. After the transfer pass, the local part of all the cells are filled with
contributions. The downward pass aims to apply these contributions to the par-
ticles. In this pass, the local contributions are propagated from top to bottom
with the Local-to-Local (L2L) operator and applied to the particles with the
Local-to-Particle (L2P). Consequently to these far-field operations, the particles
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have received their respective far contributions.

3.2 MZ2L operator

The computation occurring within all these operators depend on the particle
distribution, which is unstructured in most practical applications. As a con-
sequence, the number of operations and the time required to apply a given
operator may be highly irregular, even during the course of a single FMM com-
putation. Since the goal of the present study is to discuss the modeling of
irregular kernels rather than the FMM itself, we focus only on one particular
operator, M2L. In many physics, M2L is indeed the dominant operator in the
far field, hence the most critical kernel to model accurately.

In the transfer pass, the M2L operator is applied between each cell and its
corresponding interaction list at all levels. The interaction list for a given cell
c at level [ is composed of the children of the neighbors of ¢’s parent that are
not direct neighbors/adjacent to ¢. As illustrated in Figure |3] the interaction
list of cell 26 (red cell) is given by the 27 cells represented in orange. This
is actually the maximum number of interactions m2l,,., a cell may have (the
bound being m2l,,q., = 6% — 3% where d is the space dimension in general, hence
M2lmae = 27 with d = 2 and m2l,,4, = 189 with d = 3). On the other hand,
some cells may have a lower level of interactions. For instance, the cell 22 has
only 7 cells in its interaction list. On irregular distributions, cells may have
much fewer interactions in low density areas as further illustrated in Section

All in all, a particle/multipole may have a number of interactions ranging
between 0 and m2l,,,42.

1 3|20 Sh|B5 so|w1 6a 2L cell atlevel b

' 622 ) e RN ' ; Empty cell at level h
120" 22+ |12 30r 1525 54t 160 o2 ==
) " ’ . {32 Group at level h

17 ‘-
D F%ltl gﬁ ! \:aerle in the picture)
|.1.6. ?‘.roup at level h-1
B not numbered in the picture)
o)
14
17
L.

Figure 3: The octree at level 3, the cells are ordered by their Morton index and
the cells numbered 34, 35,40 — 44,46 are empty. The 56 non empty cells are
grouped in 8 groups (blue) of size ng = 8. At level 2, we only have 16 cells and
two groups (green). The group G4 starts at Morton index 32 and finishes at
index 47.
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3.3 Task-based FMM

Like many important numerical methods, the FMM has been turned into task-
based algorithms for exploiting modern architectures (see [211 4] 2] for instance).
A key point for achieving high performance with a task-based model is to design
tasks of well-chosen granularity. On the one hand, tasks must be small enough
so that multiple tasks can be executed concurrently, ideally providing work for
each CPU core. On the other hand, they must be large enough so that the
overhead of the task management performed by the runtime system remains
low in comparison with the time spent for performing numerical computation.
[4] introduced a blocked data structure for the octree, called group-tree, which
increases the granularity of the FMM operators and yields higher performance
than operating at the granularity of a single cell/leaf. In a so-called group-
tree, we aggregate the elements — cells or leaves — into blocks of size ng,. This
granularity parameter can then be tuned to efficiently trade-off the overhead
of the runtime with the level of concurrency. Figure [3] illustrates this grouping
scheme by representing groups at level h and h — 1 by blue and green dashed
rectangles, respectively.

3.4 MZ2L task (or M2L kernel)

Tasks may then be defined as an aggregation of applications of an operator. We
again illustrate our discussion with the M2L case. Cell 26 (red cell in Figure |3)
has interactions with four cells [28-31] within its own group G3 (which contains
the eight cells numbered 24 up to 31) and other interactions with 23 other cells
scattered within five other groups (G0, G1, G2, G4, G5). All in all, the eight
cells [24-31] composing group G3 have 24 interactions with one another and 150
interactions in total with five other groups (GO, G1, G2, G4, G5). We name
M2L_in and M2L_out tasks operating on a single group and on two different
groups, respectively. All the 174 interactions related to the eight cells composing
group G3 are thus split into one M2L_in task (corresponding to 24 interactions)
and five M2L_out tasks (corresponding to the remaining 150 interactions).

However, the irregularity of the distribution may lead to varying numbers of
interactions. For instance, G4 has an irregular shape (cells 32-33, 36-39, 45, 47)
due to empty cells (34-35, 40-44, 46). Yet composed of eight cells too (the group
size), the irregular shape of G4 M2L_in induces more (32) interactions than in
the case of G3 (24). Moreover, in the case of irregular particle distributions,
the octree is pruned so that no computation occurs on regions of the space
where there are no particles. As a consequence, the sparsity of the distribution
and the shape of the group lead to workloads ranging from 0 to ng x m2lyas
interactions. Note that in actual numerical simulations, the group size n, being
typically much larger than eight, the number of interactions within a group
tends to be higher than the number of interactions with external groups. In
the rest of the paper, we focus solely on M2L_in tasks operating within a single
group. We furthermore indifferently name it “M2L task” or “M2L kernel” as
we canonically associate a kernel with a task in a task-based context.
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Hence, the number of interactions NbInteractions within a M2L_in task is
an important parameter impacting the execution time of the task. However, in
an actual production code this parameter is typically not exposed as a quan-
tifiable data prior to the task execution, as its computing can take a significant
amount of the valuable processor time. We name indirect parameter such type
of parameters in the rest of the paper. It is opposed to direct parameters which
are immediate to evaluate in the baseline code. For the M2L_in task, these
direct parameters are the level of the octree (T'reeLevel), the number of cells in
the group, (NbCells, bounded by n,) and the size of the Morton interval cov-
ered by the first and last cells in the group (IntervalSize). Depending on the
expected robustness and accuracy of the kernel modeling, we show in the follow-
ing section that the instrumentation of the code with some indirect parameters
although costly may yet be necessary.

4 Modeling irregular computation kernels

We now propose a coarse-grain, empirical methodology for modeling irregular
tasks, illustrating the required effort through the M2L_in kernel described in
the previous section. This kernel is a good representative of tasks arising in
the modern HPC applications, which are extremely challenging to model. First,
the kernel duration depends on a combination of multiple parameters, some of
which are costly to define, e.g., the number of interactions for the M2L_in task.
Second, the value of these parameters is greatly varying, as seen with the impact
of the particles distribution or the group granularity for the M2L_in.

To find the good estimation of the kernel duration, accurate regardless of
its inputs, we propose to rely on multiple linear regression models. Multiple
linear regression attempts to model the relationship between multiple explana-
tory variable vectors Xi. j and a response variable vector Y by fitting a linear
equation of the form Equation to the observed data:

Y=a+bX{+cXo+..+2X;+e¢ (2)

In our approach, we consider that the response variable is the execution
time Tgerne; Of a kernel while each explanatory variable X; is a combination of
parameters M, N, K (the direct TreeLevel, NbCells, IntervalSize and indi-
rect NbInteractions parameters of the M2L_in task in our example). Which
parameter combinations are explanatory depends on the kernel algorithm, but
also on the machine architecture. Indeed, various platform characteristics, such
as cache sizes, can have an influence, which makes a purely theoretical predic-
tion of the parameter combinations unreliable. Our models follow the same
assumptions as the standard multiple linear regression (linearity, independence
of errors, homoscedasticity, etc.), except for the independence of the explana-
tory variables. Indeed, we adopt an empirical approach where we do not make
a priori assumption on the combination of parameters that shall form the ex-
planatory variables. Instead we test a relevant subset (see phase 2 - modelization
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- detailed in4.2)) of combinations based on products of parameters of the form
provided in Equation

Tkernel - a+b(Ma1 X Nﬂl X K’Yl) +C(M(12 X Z\/vﬁ2 X K’Y2) —+ ... (3)

where M, N, K are the direct and indirect parameters of the kernel, «, 5, 7y their
exponents and finally a, b, c are coefficients which mostly depend on the machine
speed. Note that it is also possible to assess other combinations including the
application of other functions (logarithmic, exponential, etc.) using the same
principles. For a matter of simplicity we do not discuss these options further
in the present article, but our model (and code) fully support those cases. In
practice, for most cases a research among combinations with integer exponents
offered by Equation is likely to deliver a sufficiently robust modeling.

Having a faithful kernel model allows to calculate kernel duration prediction
online, during another application run. In order to be able to make such estima-
tions, a runtime system, which orchestrates a task-based application execution,
needs to have all the elements from Equation . The values of the parameters
M, N, K should be made visible to the runtime system, and the right equation
together with exponents and coefficients have to be computed in advance. All
these require modifying the application code and doing the initial thorough of-
fline analysis of the experiment traces. We divided such an effort in three main
phases presented in Figurdd] an described as following:

1. Instrumentation: Manually adding direct and indirect parameters M,
N, K to the kernel structure, so their values can be retrieved during the
application execution. These parameters are typically provided by the
application developer, who has a good knowledge of kernel performance
and implementation details.

2. Modelization: Finding the right parameter combinations together with
the exponents «, 3, 7. These are provided by the researcher doing the full
statistical analysis of the experimental traces produced by kernel bench-
marks. The offline analysis is based on multiple linear regressions and in
our case it is performed using R language [24]. It aims at identifying the
optimal model and validating its accuracy.

3. Calibration: Computing the coefficients a, b, ¢ for a specific machine.
This is performed when an application user executes the application for
a desired range of input configurations on a target platform. Since it
is calculated automatically online by the runtime system, using ordinary
least squares method, the user running the experiments may even not
be aware of the previous phases or the algorithms used to compute the
coefficients. It is also possible to skip this phase if the same person has
previously performed the modelization part, as the outputs of statistical
analysis already contain the coefficient values. In such case, performance
models for the runtime system need to be manually written.
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Figure 4: Summary of the kernel modeling workflow. The process is divided
into three phases and although it is essentially linear, several loopbacks are
often needed due to the missing parameters or initially inadequate design of
experiments.
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In the rest of this section, we provide more details for each step of these
three phases along with the additional explanations of the actions presented in
Figurddl Note that the detailed explanations of those three steps can
be read independently from one another.

4.1 Instrumentation phase

In this stage, the application developer is expected to provide all the important
parameters on which each kernel execution time depends. These are annotated
as M, N, K in Equation and can represent the height and weight of a matrix,
number of elements to process, stride size, etc. For example, in the specific case
of the M2L_in kernel, these parameters are the level of the tree, the number of
cells of the group and the size of the interval (see Section[3.4] for more details).

It is highly advised to provide as many different parameters as possible
to ensure that the final model contains the best parameter combination for
explaining the kernel duration. Application developers should not hesitate to
add a parameter whose utility intuitively seems uncertain, since the analysis
will easily ignore it and the performance lost for having one parameter more in
the list is negligible. Moreover, even for the application experts, it is hard to
foresee the significance of a parameter for a wide range of machines and input
configurations.

In certain cases, mostly for highly irregular kernels, the directly accessible
input parameters are not sufficient to explain kernel durations. The sequence
of the executed code will depend on matrix and application structure as well as
the data placement and already-completed kernels. Therefore, the application
developer needs to provide a supplementary code for calculating additional, in-
direct, parameters which will help in estimating kernel duration. This code is
executed before the kernel and it provides new parameters, such as the number
of children or number of neighbor tasks, the estimated number of flops, etc.
In the Section3.4] it is described how the number of interactions parameter is
an extremely important indirect parameter for estimating the workload of the
M2L_in kernel. Computing these values introduces overhead to the overall ap-
plication execution time, but it might be mandatory to obtain accurate models.

Program instrumentation demands some effort from the application devel-
oper, but the advantage is that this work has to be done only once per kernel.

4.2 Modelization phase

The application developer or the application analyst then needs to find the
combinations of parameters and their exponents that allow for the most faithful
model for each kernel. Considering Equation , this phase consists in finding
the necessary number of parameter tuples and the exponents «, 3, v for each
parameter of the tuple.

First an exhaustive benchmarking of the kernels needs to be performed.
These benchmarks can be simple scripts, specially written for this purpose,
that will assess kernel behavior with different input parameter values. Such an
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approach is easy to implement for the kernels that are wrappers around standard
BLAS/LAPACK functions. Additionally, this provides a lot of flexibility for
testing various input scenarios. However, it is very difficult to develop similar
benchmarking scripts for more complex kernels, which depend on the previously
executed code. In such cases, one would need to construct a whole ”mini-
application” | which is an abstraction of the original program. This would require
a tremendous programming effort, thus it is rarely performed. Instead, the
original application with carefully chosen input configurations is run.

The described benchmarks are executed on the targeted machines and they
generate traces that contain durations of the kernel in addition to its parameter
values. It is important to note that the benchmarks should be run separately
over distinct processing units, since the algorithm and behavior of the kernels
may greatly differ. On the other hand, parameter combinations should be the
same for machines with a similar architecture.

Once traces from the benchmarks are collected, they are carefully analyzed
offline using statistical tools, in our case R language. Analysis based on multiple
linear regression is used to derive the most important parameter combinations
and their exponents «, 8, v. In theory, this analysis could be completely au-
tomatized, but in practice it is extremely difficult to propose a general analysis
script that will work for any kernel and that will take into account all possible
phenomena observations may contain. Therefore, we propose to perform a basic
initial analysis and then manually zoom on each kernel and examine any specific
behavior. Even though such an approach may be slightly repetitive, it ensures
that no kernel particularity is skipped.

The next step validates the accuracy of the models, typically evaluating
parameters importance, confidence intervals, adjusted R? value and visually
inspects model characteristics. Figurdh] shows the most common analysis of
the model, applied for the M2L_in kernel discussed above with all of its direct
parameters.

The table at the top shows a summary of the multiple linear regression
over the calibrated data. For each parameter combination and the constant in
the first column (e.g., TreeLevel), an estimation of the corresponding coeffi-
cient (for TreeLevel example this is 7.73 x 10!) is provided along with the 95%
confidence interval (for TreeLevel example this is 7.32 x 10! - 8.14 x 10'). The
final computation of these coefficients for a given machine will be detailed in the
next phase (see Sectio and at this point researchers need to inspect only the
importance of each parameter combination as they are seeking for the optimal
equation for computing the kernel duration. The three stars in the last column
indicate that in this case all parameter combinations (except IntervalSize?)
appear significant. However, this does not necessarily mean that the model is
perfect, on the contrary, it is often a product of overfitting. In fact, adjusted R?
of the corresponding model is 0.90, which is considered as mediocre accuracy in
our context.

The model weakness can be observed even better when inspecting the resid-
uals in the two bottom plots of Figurds] On the left plot, one can clearly
observe several structures, which indicates that there is a certain phenomena

RR n° 9036



Modeling Irregular Kernels of Task-based codes 16

TreeLevel

NbCells

IntervalSize

TreeLevel?

NbCells?

Interval Size?

TreeLevel x NbCells
TreeLevel x IntervalSize
NbCells x IntervalSize
TreeLevel x NbCells x IntervalSize
Constant

kK

7.73 x 10! (7.32 x 101, 8.14 x 10%)

1.52 x 10% (1.46 x 10%, 1.59 x 10?) ***

—5.55 x 1071 (—=6.65 x 1071, —4.45 x 1071) ***
—6.73 (=7.10, —6.37) ***

—6.08 x 1073 (—=7.94 x 1073, —4.21 x 1073)
—3.63 x 10712 (—6.36 x 10712, —9.04 x 10713)
—4.68 (—5.88, —3.48) ***

6.24 x 1072 (5.02 x 1072, 7.46 x 1072) ***

1.81 x 1074 (1.39 x 1074, 2.24 x 1074) ***

—2.08 x 1075 (=2.55 x 107°, —1.61 x 1075) ***
—2.27 x 10% (—2.40 x 10%, —2.14 x 10%) ***

EEES

Observations 4,987
R? 0.906
Note: *p<0.1; **p<0.05; ***p<0.01
Residuals vs Fitted Normal Q-Q Plot
8
g 1o g 7 .
©
] 0 © 8, ; ~ 4 i
0 %% 8
S o - . £ o -
@ el
% | "’e" 05' é N 4
& % 1y : !
— o —
g % - 4
S | 1658544 (2 A
st 0o
| T T T T T T
-le+05 1e+05 -4 -2 0 2 4
Fitted values Theoretical Quantiles

Figure 5: Initial model for M2L_in kernel. All parameter combinations (except
IntervalSize?) appear to be important, which is often a sign of overfitting. The
residuals are structured and the distribution on @ — @ plot is skewed, which

both suggest a missing parameter.
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not explained by the model. Many points on the same horizontal line represent
repetitive occurrences of the kernel with the same parameter values, which is
typical for a single experiment run with homogeneous data. The fact that there
is some variability is indeed common, since executing exactly the same code
on a real machine always leads to slightly different durations. However, a bad
characteristic of this model is that the mean value of many of these groups is
far from zero. This implies that the predictions of this model for an application
execution that mostly contains kernel instances for these specific parameter val-
ues will be constantly overestimating or underestimating kernel duration. This
can create a non-negligible cumulative error. Moreover, @ — @ plot on the right
in Figurdj] shows the curved pattern which suggests that the residuals do not
follow the normal distribution, as there are many points far from the red y = =
line. Therefore, such a model would in overall have a limited predictive power.

Hence, the model of M2L_in clearly needed improvements. Since adding
parameter combinations with higher exponents only makes overfitting effect
worse, application developers had to search for new, indirect, parameters that
could help us explain the observed structures. The number of interactions of
M2L_in task, described in Section3.4] came as a perfect solution, especially
since the overhead required to obtain it proved to be harmless for the overall
application performance.

Indeed, adding such a parameter greatly improved the model, as shown in
Figurd6] One can observe that there is no more structures and that the residuals
are approximately equally distributed, homoscedastic and follow the normality
law. Apart from few outliers, the model fits very well the data and the adjusted
R? value of 0.999 is almost perfect. Furthermore, the obtained model is much
simpler and thus better, as it depends solely on a linear combination of three
parameters, without any parameter interactions or exponents. It is important
to note that many other irregular kernels, including some other FMM kernels,
have models and parameter combinations that are much more complex.

This method ensures obtaining the best possible combination of parameters,
yet this does not guarantee that the model is completely faithful. Indeed, if
the right parameters for describing the kernel duration were not provided by
the application developer, the obtained model would only be a rough approxi-
mation based on what is available. Moreover, when later doing more extensive
benchmarks for very different input configuration, new analysis frequently un-
cover the need for more complex kernel models. Therefore, if the models are not
accurate enough for the future purposes, one needs to loop back to the instru-
mentation phase and include additional direct and indirect parameters, as we
discussed with the M2L_in kernel and the addition of the number of interactions
parameter.

Once the final models are obtained, the choice of parameter combinations
and the values of exponents should stay the same for any machine with a similar
architecture. The application code has to be modified one last time, putting
combinations and exponents values into the source code. These small modeling
extensions will persist even when the application source code around it evolves,
unless the core of the application or its computation kernels change in the future,
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Figure 6: M2L_in model analysis when additional parameter (number of inter-
actions) is added. Simpler model, higher adjusted R?, smaller and unstructured
residuals and a normal distribution all suggest that this model is much more
accurate than the initial one in Figurdp|
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which is rarely the case.

Finally, with the completed instrumentation and modelization, the only
missing element to compute the kernel duration predictions is to obtain co-
efficients for each parameters combination, which can be found automatically
through machine calibration.

4.3 Calibration phase

To compute the necessary coefficients (a, b, ¢ in Equation ), the fully in-
strumented task-based application is executed on a target machine by the ap-
plication user. The runtime system in charge of executing the task-based code
obtains the parameter combinations from the program, then collects kernel ex-
ecution times during the application run and at the end computes coefficients
for a given machine using a least squares method. These coefficients are stored
in performance model files, similar to classical history-based performance mod-
els. In the M2L_in example, this means keeping computed coefficients for the
constant, TreeLevel, NbCells and Nblnteractions.

Calibration needs to be performed only once for a target platform. When
changing the machine, the application should be re-executed in order to obtain
new coefficient values for the new machine, but the parameter combinations
remain unchanged. The same applies when studying different types or sizes
of the problem. Indeed, the application is calibrated for a particular subset of
input configurations. If the Design of Experiments (DoE) is correctly performed,
these inputs should cover a wide range of possible application runs. However, for
some applications this would require an extremely large experimental campaign,
which is prohibitive in terms of time and machine resources. Hence, in practice,
calibrated coefficients are applicable only for the domain in which calibration
was performed.

Finally, it is important to note that collecting the kernel durations with
corresponding parameters and computing coefficients is a completely automatic
process and thus transparent to the application user.

4.4 Conclusion

When the model accuracy is validated in the phase 2 and the coefficients for a
given machine and a subset of problems are obtained from models or carefully
calibrated in the phase 3, the model is ready. It should be able to provide
faithful predictions of the kernel duration for a wide range of inputs. In the
case of M2L_in, the final model is presented in Equation .

Tarar, = —7.094910 x T'reeLevel +5.34 x NbCells+0.85 x NbInteractions (4)
Although the whole process of identifying the right kernel model is essentially

linear, in practice even experienced researchers are obliged to go through many
iterations. In the beginning, model validation often indicates that additional
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parameters are needed to obtain a more accurate model. Moreover, modeliza-
tion itself has to be repeated multiple times until it is established which DoE
can provide the most general models. However, once the formula has been val-
idated, all application users can benefit from it, as they only need to execute
the calibration which generates the coefficients and with it the corresponding
final model for a given machine. It is worth noting that if the implementation of
the kernel is significantly modified, due to algorithm changes or adaptation to
a different architecture (e.g., GPU kernel implementation), the model may sig-
nificantly change as well, thus the whole workflow needs to be redone. Figurd4]
summarizes the most important parts of this process.

Finally, in order to use these models, one needs to simply call the function
which recovers all the necessary elements from the kernel structure and perfor-
mance files, and put them into an equation (such as Equation ) to calculate
kernel duration estimation. These predictions can then be used in many differ-
ent contexts, such as for optimizing scheduling policies or for doing performance
simulations.

5 Evaluation of model accuracy through appli-
cation performance prediction

Thanks to the accurate kernel models, durations of tasks can be estimated
during the execution. These estimations can be used for many purposes, and in
this paper we present a use case where the models are used by a simulation in
order to predict the overall application performance.

To perform such an evaluation, we used a task-based version of ScalFMM
library [], an implementation of task-based FMM algorithm. This code is
implemented on top of the StarPU runtime system [6], which is a dynamic task-
based runtime system responsible for orchestrating execution of the program.
Well identified computation pieces, called kernels (tasks), of the ScalFMM li-
brary are scheduled on different processing units by the runtime system, in order
to exploit the parallelism. During the native execution, information about the
input parameters and duration of each kernel are automatically collected by the
runtime system. In the scope of this study, StarPU has been extend to fully
support models based on multiple linear regression, and this addition will be
publicly available in the next, 1.3, release of StarPU.

It is possible to easily benefit from new performance models using StarPU’s
simulation extension, based on the SimGrid framework. StarPU-SimGrid is a
simulation/emulation tool which simulates the execution of a task-based appli-
cation on a desired platform. The control part of the runtime system has been
modified to inject delays instead of actually executing computation tasks (ker-
nels), performing data transfers, memory allocations, etc. However, in order to
obtain faithful simulation predictions, accurate task models are indispensable.
For a more detailed explanation of StarPU-SimGrid tool and its accuracy, we
refer readers to [30].
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Hence, to validate our modeling approach, we followed the phases described
in Figurdd] and obtained models for 8 extremely irregular ScalFMM kernels. In
order to provide a better comparison, we have also computed classical ("naive”)
models, which are basic kernel estimations based on a single parameter value
(e.g., group granularity or number of particles). Finally, we performed an exper-
imental campaign, where models were used to make kernel duration predictions
that are injected into simulator and then the simulations are compared to the
real machine executions.

5.1 Experimental settings

Performing an exhaustive study on various heterogeneous machines with a huge
number of different application inputs would be extremely time demanding, thus
we limited our research to only the most common problems studied by ScalFMM
developers. Although the principles for doing an extended research would be
exactly the same, the required experimentation, analysis and finally generated
models would be slightly more complex. Indeed, proposing an optimal DoE that
will allow for the most accurate and general models is often not trivial and it is
a problematic that belongs to completely different research areas.

We have chosen a pragmatic path and relied on highly optimized input con-
figurations, experimenting solely on a single homogeneous node (2 Dodeca-core
Haswell Intel Xeon 2,5 GHz 128GB RAM machine). To calibrate our models
and find the coefficients for the target machine, we executed application runs
with 12 unique input configurations. 6 of them correspond to the uniform cube
(volume) distribution while the other 6 are for a very different non-uniform el-
lipsoid (surface) distribution. For both cases, the problem size ranges from 1
million to 100 million particles. The tree height and granularity of the group
where chosen according to the ScalFMM performance study presented in [IJ.
Finally, only 23 CPU cores were used for computation, while 1 core was always
dedicated to the StarPU main thread, as such resource utilization proved to
perform better compared to using all 24 cores for running kernels.

5.2 Description of evaluated models

In order to evaluate the gain provided by our methodology and multiple linear
regression models, we have used 12 (6 cube and 6 ellipsoid) previously described
input traces to generate five separate groups of kernel models.

First two represent a naive approach, where kernel duration is approximated
using a single parameter value. For 4 ScalFMM kernels (L2L, M2L_in, M2L_out,
M2M) that mostly depend on the granularity of the groups, this granularity
input value was used to generate a simple linear model. For 4 other kernels
(L2P, P2M, P2P_in, P2P_out), linear model was based solely on the problem
size, i.e., total number of particles. We had to generate two separate models
for each type of distribution (cube and ellipsoid), since kernels perform very
differently in two cases and an unified model would be extremely inaccurate.
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Figure 7:  Overall execution time measured on a real machine (Native) and
predicted by simulation (SimGrid). Simulation predictions with MLR models
are very accurate, regardless of the particle distribution, number of particles,
tree level or granularity.

This modeling approach corresponds to the techniques most commonly used in
our field.

The rest of the models are based on multiple linear regression (MLR) and
they are generated following the approach described in Sectionfd} For MLR cube
and MLR ellipsoid models, coefficients are automatically computed, each from
6 executions with the corresponding cube and ellipsoid distribution. Although
these models are more accurate than the naive ones, they all have limited pre-
dictive power. Indeed, all these approaches contain one big disadvantage, as
the models remain specific to the type of distribution they were measured on
and cannot be used for any new distribution. This issue is resolved with our
last MLR general model, which combines all 12 input traces to obtain the co-
efficients. Such a model is general, which is a very beneficial characteristic, but
it is hard to foresee if its accuracy is matching the other models and represents
well the real executions.

5.3 Validating model accuracy

The comparison of the overall application execution times is presented in Fig-
urd7] Although naive models are computed separately for each distribution, in
most cases their overall prediction is far from reality (Native executions), espe-
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cially for more irregular ellipsoid distribution. This illustrates how difficult it
is to model complex ScalFMM kernels even for a small and relatively similar
subset of input configurations. On the other hand, SimGrid performance predic-
tions with MLR models are very close to the Native execution times, with only
few percents of error. SimGrid-MLR general results are typically less accurate
than the simulations with distribution specific MLR models, but the difference
is negligible. Interestingly, SimGrid-MLR faithfully predicts the performance
even for sub-optimal Native executions, such as the 5 million particles ellipsoid
experiment where the group granularity was badly chosen.

Furthermore, the StarPU-SimGrid simulation provides not only the final ap-
plication execution time, but also the trace of the execution. We illustrate this
with a single example, 50 million particles with cube distribution, although other
cases lead to very similar conclusions. One can observe in Figurd§ how Gantt
charts of the Native and SimGrid-MLR executions match almost perfectly, while
the naive modeling approach resulted in similar scheduling yet with longer over-
all execution. Each type of ScalFMM kernel is represented with a distinct color,
which allows to easily distinguish different phases of the application execution.
Even though the scheduling is dynamic, close resemblance of the four traces
suggests that the simulation mimics the real execution very faithfully. Some
minor differences can be detected at the beginning of the execution, due to the
simplistic modeling of the task insertion mechanism used by StarPU-SimGrid.
The longer execution of SimGrid-Naive seems to be mostly the product of over-
estimated duration of the kernels at the final phases of execution.

Visual comparison of the traces is very important, however such a view is
macroscopic and thus can hide certain phenomena. Figurdd] shows the overall
duration of each kernel, computed for the Native and SimGrid traces presented
in Figurd8] Overestimation of P2P_in and P2P_out kernel duration by naive
approach explains why simulation with this model has much longer overall ex-
ecution. Regarding the MLR models, for all 8 ScalFMM kernels the simulation
predictions are close but rarely perfect, as one might have expected from look-
ing only at the Gantt charts. This variance comes from the fact that all the
models used in simulations are not solely computed from the Native execution
they are now compared to, but from 6 or 12 different executions. The input
configuration for each Native experiment run brings certain specificities and
thus a model which was calibrated for many other inputs is likely to slightly
miscalculate the kernel duration. This is even more enhanced for MLR general
model, which also contains measurements for a completely different ellipsoid
distribution. This analysis demonstrates how the statistically extremely accu-
rate models, with adjusted R? of 0.99, can still be imperfect and have a certain
prediction error when applied on a particular use case.

Finally, FigurdI0 shows the distributions of the kernel durations for the
aforementioned traces. As naive models depend only on a single application
configuration option, they always predict kernel duration with one constant
value. This provides unrealistic executions and can be problematic for the use
cases with more idle time, since dynamic scheduling of StarPU runtime system
would behave very differently with such a kernel estimations. On the other
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Figure 11: Simulation predictions for the uniform and non-uniform sphere use
cases with different configuration options (particles, level and granularity).

hand, MLR models ensure that not only the overall kernel durations are correct,
but also that each kernel occurrence is well predicted. Hence, scheduling of
such tasks in simulation is fully representative of what is happening in Native
execution. In FigurdI0] for most of the kernels MLR distributions are overlapped
with the Native execution, which shows the good predictive power of these
models.

5.4 Applying general MLR models for different inputs

Unlike all other presented models, MLR general models can be used not only
for simulating the same input configurations, but on a much broader range of
settings. To demonstrate this, we have performed 12 new simulations with com-
pletely new inputs, changing the distribution of the particles to sphere distribu-
tion and using different number of particles, tree height and granularity. Only
later, to inspect the accuracy of our predictions, we run Native experiments with
the same input configurations and compared the makespans. Results presented
in FigurdT1]suggest that the predictions stay fairly close to the real machine per-
formance, even if the models used for simulations were derived from different
use cases.

This scenario clearly illustrates the benefits of using a simulation with MLR
general model which can quickly provide faithful performance predictions for
new inputs. Indeed, once the models have been obtained and the target machine
has been calibrated, there is no more need for accessing the experimental plat-
form, as all the simulations can be run on a local commodity machine. Moreover,
StarPU-SimGrid can perform such simulations much faster than the real exe-
cution, with a lower memory footprint and on a single CPU core. This permits
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much larger experimental campaigns, focused on studying different application
parameters and optimal configurations (e.g., ideal tree height and granularity
for a given particle number and distribution). Using such tool is advantageous
for application users and developers, as it reduces the need for accessing large
computing clusters. However, this approach has some limitations and the good
model accuracy comes only with certain hypothesis.

5.5 Limitations of the approach

The modeling approach described in Sectiorfd] provided very accurate kernel
duration estimations for extremely complex ScalFMM kernels. Nevertheless,
for some of these kernels, such as M2L_in, indirect parameters were needed.
Unfortunately, their computation comes with a certain overhead and although
it was not the case for ScalFMM, for some other applications this additional
computations can perturb the initial Native execution.

Moreover, model accuracy and generality, i.e., applicability to different input
configurations, greatly depend on the way coeflicients are calibrated. Identifying
the appropriate design of experiments needed for obtaining the best models is
not trivial. Even for researchers with a good knowledge of the kernels they
use or even sometimes develop themselves, this process often requires a lot of
empirical tests. Therefore, MLR models presented in this paper should be used
with caution and deep understanding of their limitations.

6 Conclusion and future work

In this paper, we described a methodology for accurately modeling durations of
irregular kernels using multiple linear regression. We detailed all the necessary
steps, from parameterisation and benchmarking of the kernels, through their
modeling and validation, to the final coefficient calibrations and utilization.
The proposed workflow is simple to use for application and runtime system
developers who seek to determine the models, while it is completely automatic
and transparent for application users who can benefit from model estimations.
This allows for researchers without a deep knowledge in statistical tools to easily
obtain accurate kernel duration estimations and exploit them to perform various
studies.

We evaluated our approach with a complex task-based application
(ScalFMM), implemented on top of the StarPU runtime system. All 8 ex-
tremely irregular ScalFMM kernels have been modeled and later successfully
used for StarPU-SimGrid performance simulation. Accurate predictions of both
the kernel durations and the whole execution suggest that this approach can be
very useful. Moreover, the same kernel models can be exploited for predicting
application performance on large scale distributed machines, since the task ex-
ecutions stay unchanged. We intend to perform such a study using the recent
MPT implementation of task-based ScalFMM [3] and investigate simulations
for very big scenarios.
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The evaluation presented in this paper focused on the simulation predic-
tions of the application performance. However, this is not the only use case in
which kernel estimations can be beneficial. Indeed, these models can be used
as additional scheduling heuristics to improve load balancing of the task-based
application and we intend to explore this path. We furthermore plan to assess
the proposed methodology on task-based OpenMP codes. Regarding hardware
architectures, we also aim to study the modeling of task-based codes on hetero-
geneous machines.
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A Appendix

A.1 Direct parameters limit for estimating the FMM op-
erators

We describe briefly the difficulties of estimating the workload for a task using
the direct access parameters.

A P2M task transfers the physical values of the particles to the Multipole
value in the leaves. Such task takes three parameters: the symbolic block of
the particles group, which includes the physical values, and the symbolic and
Multipole blocks of the target cell group. For our FMM kernel, the amount
of work is proportional to the number of particles and given by ( x N x O,
with ¢ a constant, N the number of particles in the group, O the number of
Multipole terms in the leaf. However, the distribution of the particles impacts
the memory access and the data reuse make the usage of this simple formula
potentially inaccurate. If there is one particle per leaf, we need to access N
different Multipole arrays, whereas, if the particles are in the same leaf, we
reuse N times the same array.

The M2M operator transfers the Multipole values from children to par-
ents. In our case, we transfer a group from level [ to a parent group
at level [ — 1. This task requires four blocks which are the sym-
bolic and Multipole data for both groups. We can provide a workload
bound from the extremities of the Morton interval index of both groups.
There are a maximum of P = Min(parents.gend, parent(children.gend)) —
Maz(parents.gsiart, parent(children.gsiart)) parent cells involved in the M2M,
where parents and children are the groups and parent(i) a function which re-
turns the index of the parent of the cell of index i. Therefore, we can bound
the number of M2M interactions to 8 x P. We can use a different estimation by
considering that the cells are uniformly distributed in space. In this case, there
should be around P/(parents.gend — parents.gsiart) X children.nb_cells children
involved. Even so such coefficient could be true in some configurations, in non
uniform distribution it will not be the case.

The operations in the tree are constant regarding the kernel complex-
ity: mno mater the level or the relative position of the cells, any single
P2M/M2M/M2L/L2L/L2P has a known cost. But this is not true for the P2P
which makes it more complicated to predict. The P2P operator (i.e., near field
operator) involves the neighbors of the leaves as it is for the M2L its interac-
tion list. Its complexity is quadratic with respects to the number of particles
because we compute all pair-wise interactions between two leaves. Therefore,
estimating the cost of the P2P inside a grouped or between two groups is diffi-
cult because we need to have the number of neighbors per leaf and the number
of particles in each of them. These parameters cannot be easily found from the
group’s properties and thus non-uniform particles distribution are then difficult
to predict.
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A.2 Full limitations of the approach

Indirect parameters challenges When the kernel model is not accurately
described using solely directly accessible parameters, this can often be improved
by adding indirect ones (see Sectio. However, this introduces an overhead
to the application, since the additional computations are needed before the ker-
nel is submitted to the runtime system. If the thread responsible for inserting all
these kernels is the performance bottleneck, this can even slow down the whole
application execution. Therefore, the influence of adding indirect parameter
computations must be carefully monitored.

Indirect parameters often provide good estimators, still there are some spe-
cific kernels whose code is too complex to be fully described using any of these
parameters. In such cases, the best one can do is to provide some rough ap-
proximations based on kernel internals. However, this may also be a sign for
application developers to reconsider their kernel implementation, as it is hard
for runtime scheduler to handle such a complexity and variability and thus ob-
taining maximal performance might be extremely challenging.

Influence of design of experiments A key difficulty of our approach relies
in obtaining a general model for every kernel that can provide accurate predic-
tions for any value of input parameters. However, due to the high complexity of
modern hardware and software stack, it is extremely hard to fully understand
kernels behavior. Therefore, the model faithfulness and its applicability domain
will greatly depend on the DoE and the initial observations chosen for acquiring
the model. In the ScalFMM modelization case, each particles distribution with
different granularity has a unique structure and the task graph generated to
resolve the problem on a parallel machine also depends on these characteristics.
Therefore, the parameters of the kernel greatly vary from one input configura-
tions to another. For example, the cube distribution with a small granularity
will have a large number of M2L_in kernels, while the ellipsoid distribution will
have a much smaller number of these kernels, but possibly with a longer du-
ration. Consequently, it is very hard to construct a single linear model that is
appropriate for both use cases. The inaccuracies caused by such a model im-
perfection can produce either underestimation or overestimation of the kernel
duration.

The simplest solution for this problem would be to use piecewise linear mod-
els instead of simple linear ones. This should account for the particular parame-
ter distribution and group the related observations. Constructing such models in
practice however proved to be very challenging, as the observations are not fol-
lowing any natural law that divides them into groups and they are also greatly
affected by external factors (other threads sharing the CPU cache, operating
system noise, etc.). Thus, choosing where to put breakpoints to separate dif-
ferent segments is unclear. We could decide to completely rely on statistical
tools that would help us find the best fitting piecewise linear model from the
traces. However, such a model, and especially the choosen breakpoints, would
be very dependent on the measured values and thus not robust enough for a
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more general use. The decision where the breakpoints are made would have a
huge influence on the overall model accuracy.

Another important modelization challenge lies in dealing with the outliers.
This is a particularly important issue for the ScalFMM kernels P2P_in, P2M,
L2P and M2L_in whose few last kernel instances are often operating on the
smaller chunks of data and thus have much lower duration. In our current
solution, we decided to ignore the existence of such outliers, which has a minor
negative influence on the overall accuracy of our models. This can be improved
either through the usage of the aforementioned piece-wise linear models or by
a finding the additional parameters which can describe such a different kernel
behavior.

Model (in)accuracy for sub-optimal executions Computation kernels
are highly optimized for the underlying hardware and software. Developers
design kernels with a certain typical input configurations in mind. Hence, exe-
cuting these kernels with a poor choice of input values might not only have a bad
performance, but could also exhibit a totally different behavior. Consequently
the choice of parameters and parameter combinations for such sub-optimal ex-
ecutions might be very different than for the well-optimized kernels. Therefore,
when one targets to obtain accurate general models, the choice of input config-
uration of the application, and thus corresponding input values for the kernels,
needs to be carefully managed.

Even larger problems may occur if the traces used for modelization (phase 2
in Figur are bogus, due to some unexpected hardware or software malfunc-
tioning of the target platform. Indeed, during our study we encountered such
an issue, where a group of experiments contained M2M kernels with an over-
long duration. The corresponding model generated from these experiments was
fitting well the observations and had high adjusted R? value. However, such a
model was not accurately representing the real kernel behavior in regular cir-
cumstances. Consequently, future SimGrid predictions based on these models
were largely overestimating new Native executions and it took us a long time to
detect the source of the error. We argue that such problems are common in our
field, as many researchers are working with prototype hardware and software
whose performance is unstable. Therefore, benchmarked observations used for
modeling should first be carefully analyzed and verified that they do not contain
certain surprising phenomena.
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