G. Keating, Bevacizumab: A Review of Its Use in Advanced Cancer, Drugs, vol.32, issue.13, pp.1891-925, 2014.
DOI : 10.1007/s40265-014-0302-9

R. Jain, Normalizing tumor vasculature with antiangiogenic therapy: A new paradigm for combination therapy, Nature Medicine, vol.7, issue.9, pp.987-996, 2001.
DOI : 10.1038/nm0901-987

R. Jain, Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy, Science, vol.307, issue.5706, pp.58-62, 2005.
DOI : 10.1126/science.1104819

M. Cesca, L. Morosi, A. Berndt, F. Nerini, I. Decio et al., Bevacizumab-improved distribution of paclitaxelpaclitaxel in ovarian cancer xenografts potentiates antitumor eficacy, Annual meeting AACCR, p.3377

A. Avallone, B. Pecori, F. Bianco, L. Aloj, F. Tatangelo et al., Critical role of bevacizumab scheduling in combination with presurgical chemo-radiotherapy in MRI-deined high-risk locally advanced rectal cancer: results of the branch trial, Oncotarget, vol.6, pp.30394-407, 2015.

A. Avallone, M. Piccirillo, L. Aloj, G. Nasti, P. Delrio et al., A randomized phase 3 study on the optimization of the combination of bevacizumab with FOLFOX/OXXEL in the treatment of patients with metastatic colorectal cancer-OBELICS (Optimization of BEvacizumab scheduLIng within Chemotherapy Scheme), BMC Cancer, vol.85, issue.5, pp.2016-2026, 2016.
DOI : 10.1002/cyto.a.22730

O. Trédan, M. Lacroix-triki, S. Guiu, M. Mouret-reynier, J. Barrière et al., Angiogenesis and tumor microenvironment: bevacizumab in the breast cancer model, Targeted Oncology, vol.31, issue.2, pp.189-98, 2015.
DOI : 10.1007/s11523-014-0334-9

D. Barbolosi, J. Ciccolini, B. Lacarelle, F. Barlési, and N. André, Computational oncology ??? mathematical modelling of drug regimens for precision medicine, Nature Reviews Clinical Oncology, vol.32, issue.4
DOI : 10.1007/s00280-014-2546-1

A. Anderson and M. A. Chaplain, Continuous and Discrete Mathematical Models of Tumor-induced Angiogenesis, Bulletin of Mathematical Biology, vol.60, issue.5, pp.857-99, 1998.
DOI : 10.1006/bulm.1998.0042

M. Chaplain, S. Mcdougall, and A. Anderson, MATHEMATICAL MODELING OF TUMOR-INDUCED ANGIOGENESIS, Annual Review of Biomedical Engineering, vol.8, issue.1, pp.233-57, 2006.
DOI : 10.1146/annurev.bioeng.8.061505.095807

F. Billy, B. Ribba, O. Saut, H. Morre-trouilhet, C. T. Bresch et al., A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy, Journal of Theoretical Biology, vol.260, issue.4, pp.545-62, 2009.
DOI : 10.1016/j.jtbi.2009.06.026

URL : https://hal.archives-ouvertes.fr/inria-00440447

F. Lignet, S. Benzekry, S. Wilson, F. Billy, O. Saut et al., Theoretical investigation of the efficacy of antiangiogenic drugs combined to chemotherapy in xenografted mice, Journal of Theoretical Biology, vol.320, pp.86-99, 2013.
DOI : 10.1016/j.jtbi.2012.12.013

URL : https://hal.archives-ouvertes.fr/hal-00785876

P. Hahnfeldt, D. Panigrahy, J. Folkman, and L. Hlatky, Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Res, vol.59, pp.4770-4775, 1999.

M. Rocchetti, M. Germani, D. Bene, F. Poggesi, I. Magni et al., Predictive pharmacokinetic???pharmacodynamic modeling of tumor growth after administration of an anti-angiogenic agent, bevacizumab, as single-agent and combination therapy in tumor xenografts, Cancer Chemotherapy and Pharmacology, vol.12, issue.4770, pp.1147-57, 2013.
DOI : 10.1007/s00280-013-2107-z

S. Wilson, M. Tod, A. Ouerdani, A. Emde, Y. Yarden et al., Modeling and predicting optimal treatment scheduling between the antiangiogenic drug sunitinib and irinotecan in preclinical settings, CPT: Pharmacometrics & Systems Pharmacology, vol.47, issue.2, pp.720-727, 2015.
DOI : 10.1002/psp4.12045

S. Benzekry, G. Chapuisat, J. Ciccolini, A. Erlinger, and F. Hubert, A new mathematical model for optimizing the combination between antiangiogenic and cytotoxic drugs in oncology, Comptes Rendus Mathematique, vol.350, issue.1-2, pp.23-31, 2012.
DOI : 10.1016/j.crma.2011.11.019

URL : https://hal.archives-ouvertes.fr/hal-00641476

Y. Gazit, J. Baish, N. Safabakhsh, M. Leunig, L. Baxter et al., Fractal Characteristics of Tumor Vascular Architecture During Tumor Growth and Regression, Microcirculation, vol.4, issue.4, pp.395-402, 1994.
DOI : 10.3109/10739689709146803

J. Baish, Y. Gazit, D. Berk, M. Nozue, L. Baxter et al., Role of Tumor Vascular Architecture in Nutrient and Drug Delivery: An Invasion Percolation-Based Network Model, Microvascular Research, vol.51, issue.3, pp.327-373, 1996.
DOI : 10.1006/mvre.1996.0031

P. Carmeliet and R. Jain, Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases, Nature Reviews Drug Discovery, vol.7, issue.6, pp.417-444, 2011.
DOI : 10.1038/nrd3455

C. Cremolini, F. Loupakis, G. Bocci, and A. Falcone, Biomarkers and Response to Bevacizumab--Letter, Clinical Cancer Research, vol.20, issue.4, 2014.
DOI : 10.1158/1078-0432.CCR-13-2763

R. Heist, D. Duda, D. Sahani, M. Ancukiewicz, P. Fidias et al., Improved tumor vascularization after anti-VEGF therapy with carboplatin and nab-paclitaxel associates with survival in lung cancer, Proceedings of the National Academy of Sciences, vol.112, issue.5, pp.1547-52, 2015.
DOI : 10.1073/pnas.1424024112

J. Poleszczuk, P. Hahnfeldt, and H. Enderling, Therapeutic Implications from Sensitivity Analysis of Tumor Angiogenesis Models, PLOS ONE, vol.41, issue.3, p.2015, 2017.
DOI : 10.1371/journal.pone.0120007.t002

K. Argyri, D. Dionysiou, F. Misichroni, and G. Stamatakos, Numerical simulation of vascular tumour growth under antiangiogenic treatment: addressing the paradigm of single-agent bevacizumab therapy with the use of experimental data, Biology Direct, vol.70, issue.4 Suppl, pp.12-22, 2016.
DOI : 10.1186/s13062-016-0114-9

H. Kuh, S. Jang, M. Wientjes, J. Weaver, and J. Au, Determinants of Paclitaxel Penetration and Accumulation in Human Solid Tumor, J Pharmacol Exp Ther, vol.290, pp.871-80, 1999.