Process Prediction in Noisy Data Sets: A Case Study in a Dutch Hospital

Abstract : Predicting the amount of money that can be claimed is critical to the effective running of an Hospital. In this paper we describe a case study of a Dutch Hospital where we use process mining to predict the cash flow of the Hospital. In order to predict the cost of a treatment, we use different data mining techniques to predict the sequence of treatments administered, the duration and the final ”care product” or diagnosis of the patient. While performing the data analysis we encountered three specific kinds of noise that we call sequence noise, human noise and duration noise. Studies in the past have discussed ways to reduce the noise in process data. However, it is not very clear what effect the noise has to different kinds of process analysis. In this paper we describe the combined effect of sequence noise, human noise and duration noise on the analysis of process data, by comparing the performance of several mining techniques on the data.
Type de document :
Communication dans un congrès
Wil Aalst; John Mylopoulos; Michael Rosemann; Michael J. Shaw; Clemens Szyperski; Philippe Cudre-Mauroux; Paolo Ceravolo; Dragan Gašević. 2nd International Symposium on Data-Driven Process Discovery and Analysis (SIMPDA), Jun 2012, Campione d’Italia, Italy. Springer, Lecture Notes in Business Information Processing, LNBIP-162, pp.60-83, 2013, Data-Driven Process Discovery and Analysis. 〈10.1007/978-3-642-40919-6_4〉
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01474690
Contributeur : Hal Ifip <>
Soumis le : jeudi 23 février 2017 - 09:33:28
Dernière modification le : jeudi 23 février 2017 - 09:40:42
Document(s) archivé(s) le : mercredi 24 mai 2017 - 12:34:06

Fichier

978-3-642-40919-6_4_Chapter.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Sjoerd Spoel, Maurice Keulen, Chintan Amrit. Process Prediction in Noisy Data Sets: A Case Study in a Dutch Hospital. Wil Aalst; John Mylopoulos; Michael Rosemann; Michael J. Shaw; Clemens Szyperski; Philippe Cudre-Mauroux; Paolo Ceravolo; Dragan Gašević. 2nd International Symposium on Data-Driven Process Discovery and Analysis (SIMPDA), Jun 2012, Campione d’Italia, Italy. Springer, Lecture Notes in Business Information Processing, LNBIP-162, pp.60-83, 2013, Data-Driven Process Discovery and Analysis. 〈10.1007/978-3-642-40919-6_4〉. 〈hal-01474690〉

Partager

Métriques

Consultations de la notice

89

Téléchargements de fichiers

28